

Crowdsourced Data Management: Overview and Challenges

Guoliang Li Yudian Zheng Ju Fan Jiannan Wang Reynold Cheng

Tsinghua University Hong Kong University

Renmin University

SFU

Outline

Crowdsourcing: Motivation

• A new computation model

- Coordinating the crowd (Internet workers) to do micro-tasks in order to solve computerhard problems.
- Examples ebay
 - Categorize the products and create product taxonomies from the user's standpoint.
 - An example question
 - Select the product category of Samsung S7
 - Phone
 - TV
 - Movie

Crowdsourcing: Applications

- Wikipedia
 - Collaborative knowledge
- reCAPTCHA
 - Digitalizing newspapers
- Foldit
 - fold the structures of selected proteins
- App Testing Test apps

Crowdsourcing: Popular Tasks

Sentiment Analysis

- Understand conversation: positive/negative

Search Relevance

- Return relevant results on the first search

Content Moderation

- Keep the best, lose the worst

Data Collection

- Verify and enrich your business data

Data Categorization

- Organize your data

Transcription

- Turn images and audio into useful data

SIGMOD'17 Tutorial

Crowdsourcing Space

Granularity

OLEG S. Android/iOS developer

Hourly Rate	\$28 /hr
Location	Ukraine
Job Success	100%

Google

IM . GENET

Micro

Macro

Money

Entertainment

reCAPTCHA

Hidden

Volunteer

Incentive

SIGMOD'17 Tutorial

Crowdsourcing Category

Game vs Payment

- Simple tasks
 - Both payment and game can achieve high quality
- Complex tasks
 - Game has better quality

Quality is rather important!

SIGMOD'17 Tutoriai

Crowdsourcing: Workflow

Crowdsourcing Requester: Workflow

New

1. DES

Build Data

Previe

2. MA

Qualif

Task S

3. GE

Monito

Design Tasks

- Task Type
- Design Strategies – UI, API, Coding
- Upload Data
- Set Tasks
 - Price
 - Time
 - Quality
- Publish Task
 - Pay
 - Monitor

|--|

Task	Tasks' Templates	
SIGN TASK		
se Template		Crange
Task		
w		Watermalog
NAGE QUALITY	Label An	Compare Two
ication Test	Object	Objects
Settings	Label the color of Apple	Compare the sizes of Tiger and Elephant
TRESULTS		• Derivar?
h	• blue skyf	
or	Count?	—
S		More things •
	Label An Image	Compare Two Images
	Label # of People in an Image	Compare # of People in two Images

Crowdsourcing Requester: Task Type

Task Type

Please choose the brand of the phone

- O Apple
- Samsung
- O Blackberry
- O Other

What are comment features?

Same band
Same color
Similar price
Same size

Please fill the	attributes	of the	product
-----------------	------------	--------	---------

Please submit a picture of a phone with the same size as the left one.

Crowdsourcing Requester: Task Design

o UI

Choose the best category for the image

\circ API

The Amazon Mechanical Turk API consists of web service operations for every task the service can perform. This section describes each operation in detail.

- AcceptQualificationRequest
- ApproveAssignment
- AssociateQualificationWithWorker
- CreateAdditionalAssignmentsForHIT

)

• CreateHIT

Coding (Your own Server) innerhtml

Create the HIT
response = client.create_hit(
 MaxAssignments = 10,
 LifetimeInSeconds = 600,
 AssignmentDurationInSeconds = 600,
 Reward ='0.20',
 Title = 'Answer a simple question',
 Keywords = 'question, answer, research',
 Description = 'Answer a simple question',
 Question = questionSample,
 QualificationRequirements = localRequirements

The response included several fields that will be helpful later hit_type_id = response['HIT']['HITTypeId'] hit_id = response['HIT']['HITId'] print "Your HIT has been created. You can see it at this link:" print "https://workersandbox.mturk.com/mturk/preview?groupId={}".format(hit_type_id) print "Your HIT ID is: {}".format(hit_id)

Crowdsourcing Requester: Task Setting

HIT – A group of micro-tasks (e.g., 5) Price, Assignment, Time

Setting up your HIT	
Reward per assignment	\$ 0.05 ⁽¹⁾
	This is how much a Worker will be paid for completing an assignment. Consider how long it will take a Worker to
Number of assignments per HIT	3 🕄
	How many unique Workers do you want to work on each HIT?
Time allotted per assignment	1 🗊 Hours 🔹
	Maximum time a Worker has to work on a single task. Be generous so that Workers are not rushed.
HIT expires in	7 🗊 Days 🜲
	Maximum time your HIT will be available to Workers on Mechanical Turk.
Auto-approve and pay Workers in	3 🗘 Days 💠
	This is the amount of time you have to reject a Worker's assignment after they submit the assignment

This is the amount of time you have to reject a Worker's assignment after they submit the assignment.

Crowdsourcing Requester: Task Setting

Quality Control

– Qualification test - Quiz

Create some test questions to enable a quiz that workers must pass to work on your task.

- Hidden test - Training

Add some questions with ground truths in your task so workers who get them wrong will be eliminated.

-Worker selection

Ensure high-quality results by eliminating workers who repeatedly fail test questions in your task

Crowdsourcing Requester: Publish

○ Prepay

cost for workers + cost for platform +cost for test

	Expected Cost:		Reward per Ass	signment:		\$0.05
	Contributor judgments (i)	\$0.00			х	3
	Cost buffer (i)	\$10.00	Estimated Total	Reward:		\$0.15
	Transaction fee (20%)	\$0.00	Estimated Fees	to Mechanical Turk:	+	\$0.03
			Estimated Cost	:		\$0.18
	Due Now	\$10.00				
	Available Funds	\$16.01				
	Add Funds					
0	Monitor	D% Finished Units	3 Workers per unit	¥0		
		5 All Units	10 Qualification Units	5 No of Hidden Units		
		Real-time Stat	tistics			
SIGMOD	0'17 Tutorial	D Finished Units	O Workers			

Crowdsourcing: Workers

- Task Selection
- Task Completion
- Workers are not free Cost
 - Make Money
- Workers are not oracle Quality
 - Make errors
 - Malicious workers
- Workers are dynamic Latency
 - Hard to predict

Crowdsourcing: Platforms

• Amazon Mechanical Turk (AMT)

more than 500,000 workers from 190 countries

SIGMOD'17 Tutorial

Crowdsourcing: Platforms

\circ CrowdFlower

AMT vs CrowdFlower

	AMT	CrowdFlower
Task Design: UI	\checkmark	\checkmark
Task Design: API	\checkmark	\checkmark
Task Design: Coding	\checkmark	×
Quality: Qualification Test	\checkmark	\checkmark
Quality: Hidden Test	×	\checkmark
Quality: Worker Selection	\checkmark	\checkmark
Task Types	All Types	All Types

AMT Task Statistics

http://www.mturk-tracker.com

SIGMOD'17 Tutonar

10月

Other Crowdsourcing Platforms

- Macrotask
 - Upwork
 - <u>https://www.upwork.com</u>
 - Zhubajie
 - <u>http://www.zbj.com</u>
- Microtask
 - ChinaCrowds (cover all features of AMT and CrowdFlower)

SERGEY P

Expert iOS developer

Hourly Pate

Job Success

iOS Development

View Profile

Cocoa Touch

Location

\$25/hr

Ukraine

10.0%

<u>http://www.chinacrowds.com</u>

SIGMOD'17 Tutorial

iOS

ALEX K

Unity3d Game Developer

NET Framework Blender3D

View Profile

\$38/hr

Russia

100%

Hourly Rate

Job Success

Location

J.S.
SUCA

OLEG S.			
Android/iOS developer			

. . . .

A 20 /

Hourry Rate			ΨZ	0/11
Location			U	kraine
Job Succes	5			100%
Swift	Java Apple Xe	Object	ive-C	
	View P	rofile		

Crowdsourcing: Challenges

SIGMOD'17 Tutorial

Crowdsourced Data Management

A crowd-powered database system

- Users require to write code to utilize crowdsourcing platforms
- Encapsulates the complexities of interacting with the crowd
- Make DB more powerful
- Crowd-powered interface
- Crowd-powered Operators
- Crowdsourcing Optimization

Tutorial Outline

Fundamental Optimization

- Quality Control
- Cost Control
- -Latency Control
- \circ Crowd-powered Database
- Crowd-powered Operators
 - Selection/Join/Group
 - Topk/Sort
 - Collection/Fill
- Challenges

Existing Works

Existing Works

Differences with Existing Tutorials

• VLDB'16

- Human factors involved in task assignment and completion.
- VLDB'15
 - Truth inference in quality control
- ICDE'15
 - Individual crowdsourcing operators, crowdsourced data mining and social applications
- VLDB'12
 - Crowdsourcing platforms and Design principles
- Our Tutorial
 - Control quality, cost and latency
 - Design Crowdsourced Database

SIGMOD'17 Tutorial

Outline

Why Quality Control?

Huge Amount of Crowdsourced Data

Statistics in AMT: Over 500K workers Over 1M tasks

Inevitable noise & error

Goal: Obtain reliable information in Crowdsourced Data

SIGMOD'17 Tutorial

Crowdsourcing Workflow

- Requester deploys tasks and budget on crowdsourcing platform (e.g., AMT)
- Workers interact with platform (2 phases)

(1) when a worker comes to the platform, the worker will be assigned to a set of tasks (task assignment);

(2) when a worker accomplishes tasks, the platform will collect answers from the worker (truth inference).

Outline of Quality Control

✓ Part I. Truth Inference

- Problem Definition
- Condition 1: with ground truth
 - Qualification Test & Hidden Test
- Condition 2: without ground truth
 - Unified Framework
 - Differences in Existing Works
 - Experimental Results

• Part II. Task Assignment

- Problem Definition
- Differences in Existing Works

Part I. Truth Inference

• An Example Task

What is the current affiliation for Michael Franklin ?

A. University of California, BerkeleyB. University of Chicago

Principle: Redundancy

Collect Answers from Multiple Workers

What is the current affiliation for Michael Franklin ?

A. University of California, BerkeleyB. University of Chicago

Outline of Quality Control

- Part I. Truth Inference
- **Problem Definition**
 - Condition 1: with ground truth
 - Qualification Test & Hidden Test
 - Condition 2: without ground truth
 - Unified Framework
 - Differences in Existing Works
 - Experimental Results

- Part II. Task Assignment
 - Problem Definition
 - Differences in Existing Works

Truth Inference Definition

Given different tasks' answers collected from workers, the target is to infer the truth of each task.

SIGMOD'17 Tutorial

A Simple Solution

• Majority Voting

Take the answer that is voted by the majority (or most) of workers.

• Limitation

Treat each worker equally, neglecting the diverse quality for each worker.

The Key to Truth Inference

• The key is to know each worker's quality

Suppose quality of 4 workers are known
How to know worker's quality ?

 If a small set of tasks with ground truth are known in advance (e.g., refer to experts)

We can estimate each worker's quality based on the *answering performance for the tasks with known truth*

• 2. If no ground truth is known in advance

The only way is to estimate each worker's quality based on the collected answers from all workers for all tasks SIGMOD'17 Tutorial

Outline

- Part I. Truth Inference
 - Problem Definition
- Condition 1: with ground truth
 - Qualification Test & Hidden Test
 - Condition 2: without ground truth
 - Unified Framework
 - Existing Works
 - Experimental Results

- Part II. Task Assignment
 - Problem Definition
 - Differences in Existing Works

1. A Small Set of Ground Truth is Known

 Qualification Test (*like an "exam"*)
 amazonmechanical turk Artificial Artificial Intelligence

Assign the tasks (with known truth) to the worker when the worker comes at first time e.g., if the worker answers 8 over 10 tasks correctly, then the quality is 0.8

• Hidden Test (like a "landmine")

Embed the tasks (with known truth) in all the tasks assigned to the worker

e.g., each time 10 tasks are assigned to a worker, then 10 tasks compose of 9 real tasks (with unknown truth), and 1 task with known truth SIGMOD'17 Tutorial

1. A Small Set of Ground Truth is Known

Limitations of two approaches

(1) need to know ground truth (may refer to experts);

(2) waste of money because workers need to answer these "extra" tasks;

(3) as reported (Zheng et al. VLDB'17), these techniques may not improve much quality.

Thus the assumption of "no ground truth is known" is widely adopted by existing works

Outline

- Part I. Truth Inference
 - Problem Definition
 - Condition 1: with ground truth
 - Qualification Test & Hidden Test
 - Condition 2: without ground truth
 - Unified Framework
 - Existing Works
 - Experimental Results

- Part II. Task Assignment
 - Problem Definition
 - Differences in Existing Works

2. If No Ground Truth is Known

 How to know each worker's quality given the collected answers for all tasks ?

Unified Framework in Existing Works

- Input: Workers' answers for all tasks
- Algorithm Framework:

• Output: Quality for each worker and Truth for each task

Inherent Relationship 1

Quality:

Truth:

Inherent Relationship 2

Outline

- Part I. Truth Inference
 - Problem Definition
 - Condition 1: with ground truth
 - Qualification Test & Hidden Test
 - Condition 2: without ground truth
 - Unified Framework
 - ・ Existing Works
 - Experimental Results

- Part II. Task Assignment
 - Problem Definition
 - Differences in Existing Works

Existing works

Classic Method

D&S [Dawid and Skene. JRSS 1979]

Recent Methods

(1) Database Community:

CATD [Li et al. VLDB14], PM [Li et al. SIGMOD14], iCrowd [Fan et al. SIGMOD15], DOCS [Zheng et al. VLDB17]

(2) Data Mining Community:

ZC [Demartini et al. WWW12], Multi [Welinder et al. NIPS 2010], CBCC [Venanzi et al. WWW14]

(3) Machine Learning Community:

GLAD [Whitehill et al. NIPS09], Minimax [Zhou et al. NIPS12], BCC [Kim et al. AISTATS12], LFC [Raykar et al. JLMR10], KOS [Karger et al. NIPS11], VI-BP [Liu et al. NIPS12], VI-MF [Liu et al. NIPS12], LFC_N [Raykar et al. JLMR10]

Differences in Existing works

- Different Task Types What type of tasks they focus on ? E.g., single-label tasks ...
 - Different Task Models
 How they model each task ?
 E.g., task difficulty ...

Workers

Different Worker Models
 How they model each worker ?
 E.g., worker probability (a value) ...

Tasks: Different Tasks Types

• **Decision-Making Tasks (yes/no task)**

Is Bill Gates currently the CEO of Microsoft ?

O Yes O No

e.g., Demartini et al. WWW12, Whitehill et al. NIPS09, Kim et al. AISTATS12, Venanzi et al. WWW14, Raykar et al. JLMR10

• Single-Label Tasks (multiple choices)

Identify the sentiment of the tweet:

O Pos O Neu O Neg

e.g., Li et al. VLDB14, Li et al. SIGMOD14, Demartini et al. WWW12, Whitehill et al. NIPS09, Kim et al. AISTATS12

• Numeric Tasks (answer with numeric values)

What is the height for Mount Everest ? _____ m

e.g., Li et al. VLDB14, Li et al. SIGMOD14

Tasks: Different Tasks Models

- Task Difficulty: a value
 - If a task receives many contradicting (or ambiguous) answers, then it is regarded as a difficult task.
 - e.g., Welinder et al. NIPS 2010, Ma et al. KDD16
- **Diverse Domains: a vector**
- Entertainment Sports Politics Entertainment

 Did Michael Jordan win more NBA
 Sports

 championships than Kobe Bryant?
 Sports

 Is there a name for the song that FC
 Sports &

Entertainment

Is there a name for the song that FC Barcelona is known for?

Tasks: Different Task Models (cont'd)

• Diverse Domains (cont'd)

To obtain the each task's model: (1) Use machine learning approaches e.g., LDA [Blei e al. JMLR03], TwitterLDA [Zhao et al. ECIR11].

(2) Use entity linking (map entity to knowledge bases).

Did Michael Jordan win more NBA championships than Kobe Bryant?

Workers: Different Worker Models

• Worker Probability: a value $p \in [0,1]$

The probability that the worker answers tasks correctly *e.g., a worker answers* **8 over 10 tasks** correctly, then the worker probability is **0.8**.

- e.g., Demartini et al. WWW12, Whitehill et al. NIPS09
- Confidence Interval: a range $[p \mathcal{E}, p + \mathcal{E}]$

 \mathcal{E} is related to the number of tasks answered => the more answers collected, the smaller \mathcal{E} is. e.g., two workers answer 8 over 10 tasks and 40 over 50 tasks correctly, then the latter worker has a smaller \mathcal{E} .

e.g., Li et al. VLDB14

Workers: Different Worker Models (cont'd)

• **Confusion Matrix: a matrix**

Capture a worker's answer for different choices given a specific truth

Given that the truth of a task is "Neu", the probability that the worker answers "Pos" is 0.3.

e.g., Kim et al. AISTATS12, Venanzi et al. WWW14

• Bias τ & Variance σ : numerical task

Answer follows Gaussian distribution: $ans \sim N(t + \tau, \sigma)$ e.g., Raykar et al. JLMR10

Workers: Different Worker Models (cont'd)

• Quality Across Diverse Domains: a vector

How to decide the scope of domains ?

Idea: Use domains from Knowledge Bases

e.g., Ma et al. KDD16, Zheng et al. VLDB17 SIGMOD'17 Tutorial

Summary of Truth Inference Methods

Method	Task Type	Task Model	Worker Model
Majority Voting	Decision-Making Task, Single-Choice Task	No	No
Mean / Median	Numeric Task	No	No
ZC [Demartini et al. WWW12]	Decision-Making Task, Single-Choice Task	No	Worker Probability
GLAD [Whitehill et al. NIPS09]	Decision-Making Task, Single-Choice Task	Task Difficulty	Worker Probability
D&S [Dawid and Skene. JRSS 1979]	Decision-Making Task, Single-Choice Task	No	Confusion Matrix
Minimax [Zhou et al. NIPS12]	Decision-Making Task, Single-Choice Task	No	Diverse Domains
BCC [Kim et al. AISTATS12]	Decision-Making Task, Single-Choice Task	No	Confusion Matrix
CBCC [Venanzi et al. WWW14]	Decision-Making Task, Single-Choice Task	No	Confusion Matrix
LFC [Raykar et al. JLMR10]	Decision-Making Task, Single-Choice Task	No	Confusion Matrix
CATD [Li et al. VLDB14]	Decision-Making Task, Single-Choice Task, Numeric Task	No	Worker Probability, Confidence

Summary of Truth Inference Methods (cont'd)

Method	Task Type	Task Model	Worker Model
PM [Li et al. SIGMOD14]	Decision-Making Task, Single-Choice Task, Numeric Task	No	Worker Probability
Multi [Welinder et al. NIPS 2010]	Decision-Making Task	Diverse Domains	Diverse Domains, Worker Bias, Worker Variance
KOS [Karger et al. NIPS11]	Decision-Making Task	No	Worker Probability
VI-BP [Liu et al. NIPS12]	Decision-Making Task	No	Confusion Matrix
VI-MF [Liu et al. NIPS12]	Decision-Making Task	No	Confusion Matrix
LFC_N [Raykar et al. JLMR10]	Numeric Task	No	Worker Variance
iCrowd [Fan et al. SIGMOD15]	Decision-Making Task, Single-Choice Diverse Do Task		Diverse Domains
FaitCrowd [Ma et al. KDD16]	et Decision-Making Task, Single-Choice Diverse Domain Task		Diverse Domains
DOCS [Zheng et al. VLDB17]	Decision-Making Task, Single-Choice Task	Diverse Domains	Diverse Domains
SIGMOD'17 Tutorial			

Outline

- Part I. Truth Inference
 - Problem Definition
 - Condition 1: with ground truth
 - Qualification Test & Hidden Test
 - Condition 2: without ground truth
 - Unified Framework
 - Existing Works
 - Experimental Results

- Part II. Task Assignment
 - Problem Definition
 - Differences in Existing Works

Experimental Results (Zheng et al. VLDB17)

• Statistics of Datasets

Dataset	# Tasks	# Answers Per Task	# Workers	Description
Sentiment Analysis [Zheng et al. VLDB17]	1000	20	185	Given a tweet, the worker will identify the sentiment of the tweet
Duck [Welinder et al. NIPS10]	108	39	39	Given an image, the worker will identify whether the image contains a duck or not
Product [Wang et al. VLDB12]	8315	3	85	Given a pair of products, the worker will identify whether or not they refer to the same product

Experimental Results

Observations (Sentiment Analysis)

#workers' answers conform to long-tail phenomenon (Li et al. VLDB14) SIGMOD'17 Tutorial Not all workers are of very high quality

Experimental Results (cont'd)

 Change of Quality vs. #Answers (Sentiment Analysis)

Observations:

1. The quality increases with #answers;

2. The quality improvement is significant with few answers, and is marginal with more answers;

3. Most methods are similar, except for Majority Voting (in pink color).

Experimental Results (cont'd)

Performance on more datasets

Dataset "Product"

Which method is the best ?

- Decision-Making & Single-Label Tasks
 - "Majority Voting" if sufficient data is given (each task collects more than 20 answers);
 - "D&S [Dawid and Skene JRSS 1979]" if limited data is given (a robust method);
 - "Minimax [Zhou et al. NIPS12]" and "Multi [Welinder et al. NIPS 2010]" as advanced techniques.
- Numeric Tasks
 - "Mean" since it is robust in practice;
 - "PM [Li et al. SIGMOD14]" as advanced techniques.

Take-Away for Truth Inference

- The key to truth is to compute each worker's quality
- if some truth is known:

qualification test and hidden test;

○ if no truth is known:

(1) relationships between "quality for each worker" and "truth for each task"

(2) different task types & models and worker models

Crowdsourcing Workflow

- Requester deploys tasks and budget on crowdsourcing platform (e.g., Amazon Mechanical Turk)
- Workers interact with platform (2 phases)

(1) when a worker comes to the platform, the worker will be assigned to a set of tasks (task assignment);

(2) when a worker accomplishes tasks, the platform will collect answers from the worker (truth inference).

Part II. Task Assignment

• Existing platforms support online task assignment

amazonmechanical turk CExternal HIT"

Intuition: requesters want to wisely use the budgets

How to allocate suitable tasks to workers?

Task Assignment Problem

Given a pool of n tasks, which set of the k tasks should be batched in a HIT and assigned to the worker?

Example: Suppose we have n=4 tasks, and each time k=2 tasks are assigned as a HIT.

This problem is complex!

Simple enumeration:
 "n choose k" combinations

(n = 100, k = 5) → 100M assignments

Need efficient (online) assignment

Fast response to worker's request

• Develop efficient heuristics

Assignment time linear in #tasks: O(n)

Outline

- Part I. Truth Inference
 - Problem Definition
 - Condition 1: with ground truth
 - Qualification Test & Hidden Test
 - Condition 2: without ground truth
 - Unified Framework
 - Existing Works
 - Experimental Results

- Part II. Task Assignment
 Problem Definition
- **Existing Works**

Main Idea

3 factors for characterizing a suitable task: Answer uncertainty Worker quality Requesters' objectives

Factor 1: Answer Uncertainty

Consider a decision-making task (yes/no)

 Select a task whose answers are the most uncertain or inconsistent

e.g., Liu et al. VLDB12, Roim et al. ICDE12

Factor 1: Answer Uncertainty

• Entropy (Zheng et al. SIGMOD15)

Given *c* choices for a task and the distribution of answers for a task $\vec{p} = (p_1, p_2, ..., p_c)$ The task's entropy is:

$$H(\vec{p}) = -\sum_{i=1}^{c} p_i \log p_i$$

e.g., a task receives 1 "yes" and 2 "no", then the distribution is (1/3, 2/3), and entropy is 0.637.

Expected change of entropy (Roim et al. ICDE12)
 (1/3, 2/3) should be more uncertain than (10/30, 20/30):

$$E[H(\vec{p'})] - H(\vec{p})$$

Factor 2: Worker Quality

• Assign tasks to the worker with the suitable expertise

 Uncertainty: consider the matching domains in tasks and the worker

e.g., Ho et al. AAAI12, Zheng et al. VLDB17
Factor 3: Objectives of Requesters

 Requesters may have different objectives (aka "evaluation metric") for different applications

Application	Sentiment Analysis	Entity Resolution
Task	I had to wait for six friggin' hours in line at the @apple store. Øpositive Øneutral Ønegative	iPad 2 = iPad 3rd Gen ? ◎ equal ◎ non-equal
Evaluation Metric	Accuracy	F-score ("equal" label)

Factor 3: Objectives of Requesters

- Solution in QASCA (Zheng et al. SIGMOD15) (1) Leverage the answers collected from workers to create a "distribution matrix"; (2) leverage the "distribution matrix" to estimate the quality improvement for a specific set of selected tasks.
- Idea: Select the best set of tasks with highest quality improvement in the specified evaluation metric.

9%

6%

Factor 3: Objectives of Requesters Other Objectives

(1) Threshold on entropy (e.g., Li et al. WSDM17) e.g., in the final state, each task should have constraint that its entropy \geq 0.6.

(2) Threshold on worker quality (e.g., Fan et al. SIGMOD15)

e.g., in the final state, each task should have overall aggregated worker quality ≥ 2.0.

(3) Maximize total utility (e.g., Ho et al. AAAI12) e.g., after the answer is given, the requester receives some utility related to worker quality, and the goal is to assign tasks that maximize the total utility.

Task Assignment

Method	Factor 1: Answer Uncertainty	Factor 2: Worker Quality	Factor 3: Requesters' Objectives
OTA [Ho et al. AAAI12]	Majority	Worker probability	Maximize total utility
CDAS [Liu et al. VLDB12]	Majority	Worker probability	A threshold on confidence + early termination of confident tasks
iCrowd [Fan et al. SIGMOD15]	Majority	Diverse domains	Maximize overall worker quality
Asklt! [Roim et al. ICDE12]	Entropy-based	No	No
QASCA [Zheng et al. SIGMOD15]	Maximize specified quality	Confusion matrix	Maximize specified quality
DOCS [Zheng et al. VLDB17]	Expected change of entropy	Diverse domains	No
CrowdPOI [Hu et al. ICDE16]	Expected change of accuracy	Worker probability	No
Opt-KG [Li et al. WSDM17]	Majority	No	≥ threshold on entropy

Take-Away for Task Assignment

- Require online and efficient heuristics
- Key idea: assign the most suitable task to worker, based on:
 - (1) uncertainty of collected answers;(2) worker quality; and(3) requester' objectives.

Public Datasets & Codes

Public crowdsourcing datasets
 (http://i.cs.hku.hk/~ydzheng2/crowd_survey/datasets.html).

 Implementations of truth inference algorithms (https://github.com/TsinghuaDatabaseGroup/crowdsourcin g/tree/master/truth/src/methods).

 Implementations of task assignment algorithms (https://github.com/TsinghuaDatabaseGroup/CrowdOTA).

Reference – Truth Inference

ZenCrowd: G. Demartini, D. E. Difallah, and P. Cudré-Mauroux. Zencrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. In WWW, pages 469–478, 2012.
 EM: A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. J.R.Statist.Soc.B, 30(1):1–38, 1977.

- [3] Most Traditional Work (D&S): A.P.Dawid and A.M.Skene. Maximum likelihood estimation of observererror-rates using em algorithm. Appl.Statist., 28(1):20–28, 1979.
- [4] iCrowd: J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng. icrowd: An adaptivecrowdsourcing framework. In SIGMOD, pages 1015–1030, 2015.
- [5] J. Gao, Q. Li, B. Zhao, W. Fan, and J. Han. Truth discovery and crowdsourcing aggregation: A unified perspective. VLDB, 8(12):2048–2049, 2015
- [6] CrowdPOI: H. Hu, Y. Zheng, Z. Bao, G. Li, and J. Feng. Crowdsourced poi labelling:Location-aware result inference and task assignment. In ICDE, 2016.
- [7] P. Ipeirotis, F. Provost, and J. Wang. Quality management on amazonmechanical turk. In SIGKDD Workshop, pages 64–67, 2010.
- [8] M. Joglekar, H. Garcia-Molina, and A. G. Parameswaran. Evaluating thecrowd with confidence. In SIGKDD, pages 686–694, 2013.
- [9] G. Li, J. Wang, Y. Zheng, and M. J. Franklin. Crowdsourced datamanagement: A survey. TKDE, 28(9):2296–2319, 2016.
- [10] CATD: Q. Li, Y. Li, J. Gao, L. Su, B. Zhao, M. Demirbas, W. Fan, and J. Han. A confidence-aware approach for truth discovery on long-tail data. PVLDB,8(4):425–436, 2014.
- [11] PM: Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han. Resolving conflicts inheterogeneous data by truth discovery and source reliability estimation. InSIGMOD, pages 1187–1198, 2014.
- [12] KOS / VI-BP / VI-MF: Q. Liu, J. Peng, and A. T. Ihler. Variational inference for crowdsourcing. In NIPS, pages 701–709, 2012.
- [13] CDAS: X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. CDAS: Acrowdsourcing data analytics system. PVLDB, 5(10):1040–1051, 2012

Reference – Truth Inference (cont'd)

[14] FaitCrowd: F. Ma, Y. Li, Q. Li, M. Qiu, J. Gao, S. Zhi, L. Su, B. Zhao, H. Ji, and J. Han.Faitcrowd: Fine grained truth discovery for crowdsourced data aggregation. In KDD, pages 745–754. ACM, 2015.
[15] V. C. Raykar and S. Yu. Eliminating spammers and ranking annotators for crowdsourced labeling tasks. Journal of Machine Learning Research, 13:491–518, 2012.

[16] V. C. Raykar, S. Yu, L. H. Zhao, A. K. Jerebko, C. Florin, G. H. Valadez, L. Bogoni, and L. Moy. Supervised learning from multiple experts: whom totrust when everyone lies a bit. In ICML, pages 889–896, 2009.

[17] LFC: V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and L. Moy. Learning from crowds. JMLR, 11(Apr):1297–1322, 2010.

[18] Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan, Reynold Cheng. Truth Inference in Crowdsourcing: Is the Problem Solved? VLDB 2017.

[19] DOCS: Yudian Zheng, Guoliang Li, Reynold Cheng. DOCS: A Domain-Aware Crowdsourcing System Using Knowledge Bases. VLDB 2017.

[20] CBCC: M. Venanzi, J. Guiver, G. Kazai, P. Kohli, and M. Shokouhi.Community-based bayesian aggregation models for crowdsourcing. In WWW,pages 155–164, 2014.

[21] Minimax: D. Zhou, S. Basu, Y. Mao, and J. C. Platt. Learning from the wisdom ofcrowds by minimax entropy. In NIPS, pages 2195–2203, 2012.

[22] P. Smyth, U. M. Fayyad, M. C. Burl, P. Perona, and P. Baldi. Inferring groundtruth from subjective labelling of venus images. In NIPS, pages 1085–1092,1994.

[23] Multi: P. Welinder, S. Branson, P. Perona, and S. J. Belongie. The multidimensional wisdom of crowds. In NIPS, pages 2424–2432, 2010.

[24] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. R. Movellan. Whose vote should count more:
Optimal integration of labels from labelers of unknown expertise. In NIPS, pages 2035–2043, 2009.
[25] BCC: H.-C. Kim and Z. Ghahramani. Bayesian classifier combination. In AISTATS, pages 619–627, 2012.

[26] Aditya Parameswaran ,Human-Powered Data Management ,

http://msrvideo.vo.msecnd.net/rmcvideos/185336/dl/185336.pdf

Reference – Truth Inference (cont'd)

[27] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan):993–1022, 2003.

[28] W. X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li. Comparing twitter and traditional media using topic models. In ECIR, pages 338–349, 2011.

[29] X. L. Dong, B. Saha, and D. Srivastava. Less is more: Selecting sources wisely for integration. PVLDB, 6(2):37–48, 2012.

[30] X. Liu, X. L. Dong, B. C. Ooi, and D. Srivastava. Online data fusion. PVLDB, 4(11):932–943, 2011.
[31] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan):993–1022, 2003.

[32] W. X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li. Comparing twitter and traditional media using topic models. In ECIR, pages 338–349, 2011.

Reference – Task Assignment

[1] CDAS: X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. CDAS: Acrowdsourcing data analytics system. PVLDB, 5(10):1040–1051, 2012

[2] OTA: C.-J. Ho and J. W. Vaughan. Online task assignment in crowdsourcingmarkets. In AAAI, 2012.
 [3] QASCA: Yudian Zheng, Jiannan Wang, Guoliang Li, Reynold Cheng, Jianhua Feng. QASCA: A Quality-Aware Task Assignment System for Crowdsourcing Applications. SIGMOD 2015.

[4] C.-J. Ho, S. Jabbari, and J. W. Vaughan. Adaptive task assignment forcrowdsourced classification. In ICML, pages 534–542, 2013.

[5] CrowdPOI: H. Hu, Y. Zheng, Z. Bao, G. Li, and J. Feng. Crowdsourced poi labelling:Location-aware result inference and task assignment. In ICDE, 2016.

[6] DOCS: Yudian Zheng, Guoliang Li, Reynold Cheng. DOCS: A Domain-Aware Crowdsourcing System Using Knowledge Bases. VLDB 2017.

[7] AskIt: R. Boim, O. Greenshpan, T. Milo, S. Novgorodov, N. Polyzotis, and W. C. Tan. Asking the right questions in crowd data sourcing. In ICDE, 2012.

[8] iCrowd: J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng. icrowd: An adaptivecrowdsourcing framework. In SIGMOD, pages 1015–1030, 2015.

[9] Opt-KG: Qi Li, Fenglong Ma, Jing Gao, Lu Su, and Christopher J Quinn, Crowdsourcing High Quality Labels with a Tight Budget, WSDM 2016.

[10] Jing Gao, Qi Li, Bo Zhao, Wei Fan, and Jiawei Han, Enabling the Discovery of Reliable Information from Passively and Actively Crowdsourced Data, KDD'16 tutorial.

Outline

Cost Control

o Goal

- How to reduce monetary cost?

$\circ \quad \mathbf{Cost} = n \times c$

- n: number of tasks
- c: cost of each task

• Challenges

- How to reduce n?
- How to reduce *c*?

Classification of Existing Techniques

\circ How to reduce n?

- ्रिङ्ग Task Pruning
 - Answer Deduction
 - Task Selection
 - Sampling

The Database Community

• How to reduce *c*?

Task Design

The HCI Community

Task Pruning

o Key Idea

- Prune the tasks that machines can do well

o Easy Task vs. Hard Task

Are they the same?

Are they the same?

IPHONE 6 = iphone 6

IBM = Big Blue

How to quantify "difficulty"

- Similarity value
- Match probability

Jiannan Wang, Tim Kraska, Michael J. Franklin, Jianhua Feng: CrowdER: Crowdsourcing Entity Resolution. VLDB 2012
 SIGMOD 17 Futional

Task Pruning (cont'd)

Workflow (non-iterative)

- 1. Rank tasks based on "difficulty"
- 2. Prune the tasks whose difficulty \leq threshold

\circ Pros

- Support a large variety of applications

\circ Cons

 Only work for easy tasks (i.e., the ones that machines can do well)

Classification of Existing Techniques

\circ How to reduce n?

- Task Pruning
- 🚰 Answer Deduction
 - Task Selection
 - Sampling

The Database Community

• How to reduce *c*?

- Task Design

The HCI Community

Answer Deduction

○ Key Idea

 Prune the tasks whose answers can be deduced from existing crowdsourced tasks

o Example: Transitivity

Jiannan Wang, Guoliang Li, Tim Kraska, Michael J. Franklin, Jianhua Feng: Leveraging transitive relations for crowdsourced joins. SIGMOD 2013 Domatena Firmani, Barna Sana, Divesh Srivastava: Online Entity Resolution Using an Oracle. PVLDB 2016

Answer Deduction (cont'd)

Workflow (iterative)

- 1. Pick up some tasks from a task pool
 - 2. Collect answers of the tasks from the Crowd
- 3. Remove the tasks whose answers can be deduced

Answer Deduction (cont'd)

\circ **Pros**

-Work for both easy and hard tasks

\circ Cons

-Human errors can be amplified

Classification of Existing Techniques

\circ How to reduce n?

- Task Pruning
- Answer Deduction
- 🚑 Task Selection
 - Sampling

The Database Community

• How to reduce *c*?

- Task Design

The HCI Community

Task Selection

○ Key Idea

- Select the most beneficial tasks to crowdsource

• Example 1: Active Learning

– Most beneficial for training a model

Supervised Learning

Active Learning

Mozafari et al. Scaling Up Crowd-Sourcing to Very Large Datasets: A Case for Active Learning. PVLDB 2014
 SIGMOD 2014
 TUTOTIAL

Task Selection

\circ Key Idea

- Select the most beneficial tasks to crowdsource

o Example 2: Top-k

– Most beneficial for getting the top-k results

Which picture visualizes the best SFU Campus?

The most beneficial task:

SIGK #On 2016 94 SIGK #On 2016 94 SIGK #On 2016 94

Task Selection (cont'd)

• Workflow (iterative)

- 1. Select a set of most beneficial tasks
 - Collect their answers from the Crowd
 Update models and results

\circ **Pros**

Allow for a flexible quality/cost trade-off

○ Cons

 Hurt latency (since only a small number of tasks can be crowdsourced at each iteration)

Classification of Existing Techniques

\circ How to reduce n?

- Task Pruning
- Answer Deduction
- Task Selection
- 🚄 Sampling

The Database Community

• How to reduce *c*?

Task Design

The HCI Community

Sampling

○ Key Idea

-Ask the crowd to work on sample data

o Example: SampleClean

Jiannan Wang, Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, Tim Kraska, Tova Milo: A sample-and-clean framework for SIGMOD Conference 2014: 469-480

Sampling (Cont'd)

O Workflow (iterative)

- ▶ 1. Generate tasks based on a sample
 - 2. Collect the task answers from the Crowd
 - 3. Infer the results of the full data

o **Pros**

 Provable bounds for quality (e.g., the paper count is 211±5 with 95% probability)

○ Cons

 Limited to certain applications (e.g., it does not work for max)
 SIGMOD'17 Tutorial

Classification of Existing Techniques

\circ How to reduce n?

- Task Pruning
- Answer Deduction
- Task Selection
- Sampling

The Database Community

• How to reduce *c*?

🖅 – Task Design

The HCI Community

Task Design (Cont'd)

\circ Key Idea

- Optimize User Interface

• Example 1: Count

Task Design (Cont'd)

\circ Key Idea

- Optimize User Interface

• Example 2: Image Labeling

Summary of Cost Control

Two directions

- How to reduce n? \leftarrow DB
- How to reduce c? HCI

DB and HCI should work together

Non-iterative and iterative workflows are both widely used

Outline

Latency Control

o Goal

- How to reduce latency?

Latency = n×t
-n: number tasks
-t: latency of each task

Latency = The completion time of the last task

Classification of Latency Control

🖅 1. Single Task

 Reduce the latency of a single task

2. Single Batch

 Reduce the latency of a batch of tasks

3. Multiple Batches

 Reduce the latency of multiple batches of tasks

Multiple batches

Daniel Haas, Jiannan Wang, Eugene Wu, Michael J. Franklin: CLAMShell: Speeding up Crowds for Low-latency SIGMOD'17 at utoria. PVLDB 2015

Single-Task Latency Control

Latency consists of

- Phase 1: Recruitment Time
- Phase 2: Qualification and Training Time
- Phase 3: Work Time

Improve Phase 1

- See the next slide

Improve Phase 2

 Remove this phase by applying other quality control techniques (e.g., worker elimination)

Improve Phase 3

-Better User Interfaces

Reduce Recruitment Time

Retainer Pool

- Pre-recruit a pool of crowd workers

Alert when task is ready

OK

Michael S. Bernstein, Joel Brandt, Robert C. Miller, David R. Karger: Crowds in two seconds: enabling realtime SIGMOD 47-p where bihterfaces. UIST 2011

Classification of Latency Control

1. Single Task

 Reduce the latency of a single task

2. Single Batch

 Reduce the latency of a batch of tasks

Single batch

3. Multiple Batches

 Reduce the latency of multiple batches of tasks

Multiple batches

Daniel Haas, Jiannan Wang, Eugene Wu, Michael J. Franklin: CLAMShell: Speeding up Crowds for Low-latency SIGMOD'17 at utoria. PVLDB 2015
Single-Batch Latency Control

Idea 1: Pricing Model

Model the relationship between task price and completion time

• Predict worker behaviors [1,2]

- Recruitment Time
- Work Time

Set task price

- Fixed Pricing^[2]
- Dynamic Pricing [3]

[1]. Wang et al. Estimating the completion time of crowdsourced tasks using survival analysis models. CSDM 2011 [2]. S. Faradani, B. Hartmann, and P. G. Ipeirotis. What's the right price? pricing tasks for finishing on time. In AAAI Workshop, 2011. SIGMOD 17 Tutorial 109

Single-Batch Latency Control

o Idea 2: Straggler Mitigation

 Replicate a task to multiple workers and return the result of the fastest worker

Classification of Latency Control

1. Single Task

 Reduce the latency of a single task

2. Single Batch

 Reduce the latency of a batch of tasks

3. Multiple Batches

 Reduce the latency of multiple batches of tasks

Multiple batches

Daniel Haas, Jiannan Wang, Eugene Wu, Michael J. Franklin: CLAMShell: Speeding up Crowds for Low-latency SIGMOD'1 Pateutoria. PVLDB 2015

Multiple-Batches Latency Control

o Why multiple batches?

- -To save cost
 - Answer Deduction (e.g., leverage transitivity)
 - Task Selection (e.g., active learning)

Multiple-Batches Latency Control

o Two extreme cases

- <u>Single task per batch</u>: high latency

-All tasks in one batch: high cost

o **Idea 1**

 Choose the maximum batch size that does not hurt cost ^[1,2]

o **Idea 2**

– Model as a latency budget allocation problem ^[3]

- 1. Jiannan Wang, Guoliang Li, Tim Kraska, Michael J. Franklin, Jianhua Feng: Leveraging transitive relations for crowdsourced joins. SIGMOD 2013
- 2. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and A. Y. Halevy. Crowd-powered find algorithms. ICDE 2014.

SIGM@Dids7etTaltoriaAn optimal latency budget allocation strategy for crowdsourced MAXIMUM operations. SIGMOD 2015113

Summary of Latency Control

○ Latency

- The completion time of the last task

Classification of Latency Control

- Single-Task
 - Retainer Pool
 - Better UIs
- Single-Batch
 - Pricing Model
 - Straggler Mitigation
- Multiple-Batches
- SIGMOD'17 Tutor Batch size

Two Take-Away Messages

\odot There is no free lunch

- Cost control
 - Trades off quality (or/and latency) for cost
- -Latency control
 - Trades off quality (or/and cost) for latency

Learn from other communities

- Task Design (from HCI)
- Straggler Mitigation (from Distributed System)

Reference – Cost Control

- 1. Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov, and A. Somech. Oassis: query driven crowd mining. In SIGMOD, pages 589–600. ACM, 2014
- 2. X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz. Pairwise ranking aggregation in a crowdsourced setting. In WSDM, pages 193–202, 2013
- 3. G. Demartini, D. E. Difallah, and P. Cudre-Mauroux. Zencrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. In WWW, pages 469–478, 2012.
- 4. B. Eriksson. Learning to top-k search using pairwise comparisons. In AISTATS, pages 265–273, 2013.
- 5. C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. W. Shavlik, and X. Zhu. Corleone: hands-off crowdsourcing for entity matching. In SIGMOD, pages 601–612, 2014.
- 6. A. Gruenheid, D. Kossmann, S. Ramesh, and F. Widmer. Crowdsourcing entity resolution: When is A=B? Technical report, ETH Zurich.
- 7. S. Guo, A. G. Parameswaran, and H. Garcia-Molina. So who won?: dynamic max discovery with the crowd. In SIGMOD, pages 385–396, 2012.
- 8. H. Heikinheimo and A. Ukkonen. The crowd-median algorithm. In HCOMP, 2013.
- 9. S. R. Jeffery, M. J. Franklin, and A. Y. Halevy. Pay-as-you-go user feedback for dataspace systems. In SIGMOD, pages 847–860, 2008.
- 10. H. Kaplan, I. Lotosh, T. Milo, and S. Novgorodov. Answering planning queries with the crowd. PVLDB, 6(9):697–708, 2013.
- 11. A. R. Khan and H. Garcia-Molina. Hybrid strategies for finding the max with the crowd. Technical report, 2014.
- 12. A. Marcus, D. R. Karger, S. Madden, R. Miller, and S. Oh. Counting with the crowd. PVLDB, 6(2):109–120, 2012.
- 13. B. Mozafari, P. Sarkar, M. Franklin, M. Jordan, and S. Madden. Scaling up crowd-sourcing to very large datasets: a case for active learning. PVLDB, 8(2):125–136, 2014.
- 14. A. G. Parameswaran, A. D. Sarma, H. Garcia-Molina, N. Polyzotis, and J. Widom. Human-assisted graph search: it's okay to ask questions. PVLDB, 4(5):267–278, 2011.

SIGMOD'17 Tutorial

Reference – Cost Control

- 15. T. Pfeiffer, X. A. Gao, Y. Chen, A. Mao, and D. G. Rand. Adaptive polling for information aggregation. In AAAI, 2012.
- 16. B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar. Crowdsourced enumeration queries. In ICDE, pages 673–684, 2013.
- 17. V. Verroios and H. Garcia-Molina. Entity resolution with crowd errors. In ICDE, pages 219–230, 2015.
- 18. N. Vesdapunt, K. Bellare, and N. N. Dalvi. Crowdsourcing algorithms for entity resolution. PVLDB, 7(12):1071–1082, 2014.
- 19. J. Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER: crowdsourcing entity resolution. PVLDB, 5(11):1483–1494, 2012.
- 20. J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and T. Milo. A sample-and-clean framework for fast and accurate query processing on dirty data. In SIGMOD, pages 469–480, 2014.
- 21. J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging transitive relations for crowdsourced joins. In SIGMOD, 2013.
- 22. S. Wang, X. Xiao, and C. Lee. Crowd-based deduplication: An adaptive approach. In SIGMOD, pages 1263–1277, 2015.
- 23. S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question selection for crowd entity resolution. PVLDB, 6(6):349–360, 2013.
- 24. T. Yan, V. Kumar, and D. Ganesan. Crowdsearch: exploiting crowds for accurate real-time image search on mobile phones. In MobiSys, pages 77–90, 2010.
- 25. P. Ye, U. EDU, and D. Doermann. Combining preference and absolute judgements in a crowd-sourced setting. In ICML Workshop, 2013.
- 26. C. J. Zhang, Y. Tong, and L. Chen. Where to: Crowd-aided path selection. PVLDB, 7(14):2005–2016, 2014.

Reference – Latency Control

- 1. J. P. Bigham et al. VizWiz: nearly real-time answers to visual questions. UIST, 2010.
- 2. M. S. Bernstein, J. Brandt, R. C. Miller, and D. R. Karger. Crowds in two seconds: enabling realtime crowd-powered interfaces. UIST, 2011.
- 3. M. S. Bernstein, D. R. Karger, R. C. Miller, and J. Brandt. Analytic Methods for Optimizing Realtime Crowdsourcing. Collective Intelligence, 2012.
- 4. Y. Gao and A. G. Parameswaran. Finish them!: Pricing algorithms for human computation. PVLDB, 7(14):1965–1976, 2014
- 5. S. Faradani, B. Hartmann, and P. G. Ipeirotis. What's the right price? pricing tasks for finishing on time. In AAAI Workshop, 2011.
- 6. D. Haas, J. Wang, E. Wu, and M. J. Franklin. Clamshell: Speeding up crowds for low-latency data labeling. PVLDB, 9(4):372–383, 2015
- 7. A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and A. Y. Halevy. Crowd-powered find algorithms. In ICDE, pages 964–975, 2014
- 8. V. Verroios, P. Lofgren, and H. Garcia-Molina. tdp: An optimal-latency budget allocation strategy for crowdsourced MAXIMUM operations. In SIGMOD, pages 1047–1062, 2015.
- 9. T. Yan, V. Kumar, and D. Ganesan. Crowdsearch: exploiting crowds for accurate real-time image search on mobile phones. In MobiSys, pages 77–90, 2010.

Outline

Why Crowdsourcing DB Systems

Limitations of Traditional DB Systems

model body style price make Sedan Volve **S80** \$10K XC60 **SUV** \$20K Volve BMW X5 SUV \$25K ? Prius Sedan \$15K

Problem: Close world assumption

Table: car

Why Crowdsourcing DB Systems

Limitations of Traditional DB Systems

Table: car_image

M.color = "red"

Problem: Machine-hard tasks

.

of rows

.

Crowdsourcing DB Systems

\odot Integrating crowd functionality to DB

- Close world \rightarrow Open world

- Processing DB-hard queries

System Architecture

SIGMOD'17 Tutorial

Running Example

car_review R1

car R2

review make model sentiment

 r_1 ... The 2014 **Volvo S80** is the flagship model for the brand...

 r_2 ...**S80** is a **Volvo** model having problems in oil pump..

 r_3 ...The **BMW X5** is surprisingly agile for a big SUV..

id	make	model	style
a_1	Volvo	S80	Sedan
<i>a</i> ₂	Toyota	Avalon	Sedan
<i>a</i> ₃	Volvo	XC60	SUV
a_4	Toyota	Corolla	Sedan
<i>a</i> ₅	BMW	X5	SUV
<i>a</i> ₆	Toyota	Camry	Sedan

car_image R3

 m_1

Example Query:

Find **black cars** with **high-quality images** and **positive reviews**

Crowdsourcing DB Systems

o System Overview

- 🚰 CrowdDB
 - Qurk
 - Deco
 - CDAS
 - CDB

Crowdsourcing Systems

Operator Design

– Design Principles

Crowdsourcing Operators

CrowdDB Query Language

o CrowdSQL: Crowdsource missing data

Missing Columns

Missing Tuples

review	make	model	sentiment	
XXX	Volvo	S80	?	

make	model	style	color		
?	?	?	?		

```
CREATE TABLE car_review
(
   review STRING,
   make CROWD STRING,
   model CROWD STRING,
   sentiment CROWD STRING
);
```

```
CREATE CROWD TABLE car
(
   make STRING,
   model STRING,
   color STRING,
   style STRING,
   PRIMARY KEY (make, model)
);
```

CrowdDB Query Language

o CrowdSQL: Crowdsource DB-hard tasks

Crowd-powered Filtering

The Vovlo S80 is the flagship model of this brand...

Crowd-Powered Ordering

WHERE sentiment ~= "pos";

FROM car_image
WHERE subject = "Volvo S60"
ORDER BY CROWDORDER("clarity");

CrowdDB Query Processing

Crowd operators for data missing

CrowdDB Query Processing

• Crowd operators for DB-hard tasks

CrowdCompare

CrowdDB Query Optimization

O Strategy: Rule-based optimizer

Crowdsourcing DB Systems

- o System Overview
 - CrowdDB
- 🖅 Qurk
 - Deco
 - CDAS
 - CDB

Crowdsourcing Systems

Operator Design

– Design Principles

Crowdsourcing Operators

Qurk Query Language

SQL with User-Defined Functions (UDFs)

Qurk Query Processing

Designing crowd-powered operators

Crowd Join: Designing better interfaces

Is the same car in the two images?

Simple Join

Find pairs of images of the same car?

SIGMOD'17 Tutorial

Qurk Query Processing

Designing crowd-powered operators

- Crowd Sort: Designing better interfaces

Rating-Based Interface Comparing-Based Interface

Qurk Query Optimization

o Join: Feature filtering optimization

```
SELECT *
```

FROM car image M1 JOIN car image M2

ON sameCar(M1.img, M2.img) AND

POSSIBLY make(M1.img) = make(M2.img) AND

POSSIBLY style(M1.img) = style(M2.img)

Filtering pairs with different makes & colors

o Is filtering feature always helpful?

- Filtering cost vs. join cost

- What if all cars has the same style
- Causing false negatives, e.g., color
- Disagreement among the crowd

Crowdsourcing DB Systems

o System Overview

- CrowdDB
- Qurk
- 🕝 Deco
 - CDAS
 - CDB

Crowdsourcing Systems

Operator Design

– Design Principles

Crowdsourcing Operators

Deco Query Language

o Conceptual Relation

o Raw Schema

CarA (make, model) // Anchor table CarD1 (make, model, door-num) //Dependent table CarD2 (make, model, style) // Dependent table

Fetch Rules: How to collect data

$$\emptyset \Rightarrow$$
 make, model //Ask for a new car
make, model \Rightarrow door-num//Ask for d-n of a given car
make, model \Rightarrow style //Ask for style of a given car

Deco Query Language

Resolution rules

image \Rightarrow style: majority-of-3 // majority vote $\emptyset \Rightarrow$ make, model: dupElim //eliminate duplicates

○ Query

- Collecting style and color of at least 8 SUV cars
- SQL Query:

```
SELECT make, model, door-num, style
FROM Car
WHERE style = "SUV" MINTUPLES 8
```

- Standard SQL Syntax and Semantics
- New keyword: MINTUPLES

Deco Query Processing

o Crowd Operator: Fetch

Fetch [∅⇒ma,mo]	Fetch [ma,mo⇒st]	Fetch [ma,mo⇒dn]		
	Collect style of a given car	Collect style of a given car		
Collect New Car	Make Volvo	Make Volvo		
Make	Model S80	Model S80		
Model	Style	Door-Num		

O Machine Operators

- Scan: insert a collected tuple into raw table
- -Resolve: e.g., majority-of-3, dupElim
- DLOJoin: traditional join

SIGMOD'17 Tutorial

Deco Query Optimization

o Example

- Current Status of the database

CarA		CarD2		
make	model	make	model	Style
Volve	S80	Volve	XC60	SUV
Toyota	Corolla	BMW	X5	SUV
BMW	X5	Volvo	S80	Sedan
Volvo	XC60			

- Selectivity of [style='SUV'] = 0.1
- Selectivity of dupElim = 1.0
- Each fetch incurs \$0.05

o How will a query be evaluated?

Deco Query Processing

SIGMOD'17 Tutorial

Deco Query Optimization

• Cost Estimation

- Let us consider a simple case

- Resolve [dupElim]

- Target: 8 SUV cars
- DB: 2 SUV cars, 1 Sedan car, and 1 unknown car
- Estimated: 2.1 SUV

-Fetch

- Target: (8 2.1) SUV cars
- Sel [style='SUV'] = 0.1
- Fetch 59 cars
- -Cost: 59 * \$0.05 = \$2.95

Deco Query Optimization

o Better Plan: Reverse Query Plan

SIGMOD'17 Tutorial
Crowdsourcing DB Systems

o System Overview

- CrowdDB
- Qurk
- Deco

- CDB

Crowdsourcing Systems

Operator Design

– Design Principles

Crowdsourcing Operators

CDAS Query Language

SQL with Crowdsourcing on demand

- Crowdsourcing when columns are unknown

Is the review positive?

CDAS Query Processing

Designing Crowd Operators

- CrowdFill: filling missing values
- CrowdSelect: filtering items
- CrowdJoin: matching items from multiple sources

CDAS Query Processing

Performance metrics

- Monetary cost: Unit price * # of HITs
- Latency: # of crowdsourcing rounds

Optimization Objectives:

- Cost Minimization: finding a query plan minimizing the monetary cost
- Cost Bounded Latency Minimization: finding a query plan with bounded cost and the minimum latency

Key Optimization Idea

- Cost-based query optimization
- Balance the tradeoff between cost and latency

CDAS Query Processing

O Cost-Latency Tradeoff

How to balance cost-latency tradeoff?

${\rm \circ}\,$ How to implement Join

- CJoin: Compare every pairs
- CFill: Fill missing join attributes

• A Hybrid CFill-CJoin Optimization

SELECT * FROM car R2, car_image R3
WHERE R2.make = R3.make AND R2.model = R3.model

Complex query optimization

- The latency constraint allocation problem

Crowdsourcing DB Systems

o System Overview

- CrowdDB
- Qurk
- Deco
- CDAS
- 🗐 CDB

Crowdsourcing Systems

Operator Design

– Design Principles

Crowdsourcing Operators

CDB Query Language

Collect Semantics

- Fill Semantics

```
FILL car_image.color
```

WHERE car image.make = "Volvo";

– Collect Semantics

COLLECT car.make, car.model
WHERE car.style = "SUV";

Query Semantics

```
SELECT *
FROM car_image M, car C, car_review R
WHERE M.(make,model) CROWDJOIN C.(make,model)
AND R.(make, model) CROWDJOIN C.(make,model)
AND M.color CROWDEQUAL "red"
```

CDB Query Processing

o Graph-Based Query Model

- Computing matching probabilities each CROWDJOIN
- Building a query graph that connects tuple pairs with matching probabilities larger than a threshold

CDB Query Processing

o Graph-Based Query Model

- Crowdsource all edges (Yes/No tasks)
- Coloring edges by the crowd answers
- Result tuple: a path containing all CROWDJOINs

○ Monetary cost control

- Traditional goal: finding an optimal join order
- CDB goal: selecting minimum number of edges

Traditional 2 tasks + 5 tasks + 1 task = 8 tasks

○ Monetary cost control

- Traditional goal: finding an optimal join order
- CDB goal: selecting minimum number of edges

Traditional2 tasks+5 tasks+1 task=8 tasksCDB5 tasksNP-HARD → Various HeuristicsSIGMOD'17 Tutorial5 tasks158

○ Latency control

- Partitioning the graph into connected components
- Crowdsourcing each components in parallel

Quality control

Probabilistic truth inference model

$$p_{i} = \frac{\prod_{(w,a)\in V_{t}} (q_{w})^{\mathbb{1}\{i=a\}} \cdot \left(\frac{1-q_{w}}{\ell-1}\right)^{\mathbb{1}\{i\neq a\}}}{\sum_{j=1}^{\ell} \prod_{(w,a)\in V_{t}} (q_{w})^{\mathbb{1}\{j=a\}} \cdot \left(\frac{1-q_{w}}{\ell-1}\right)^{\mathbb{1}\{j\neq a\}}}$$

Entropy-based task assignment model

$$\mathcal{I}(t) = \mathcal{H}(\vec{p}) - \sum_{i=1}^{\ell} \left[p_i \cdot q_w + (1 - p_i) \cdot \frac{1 - q_w}{\ell - 1} \right] \cdot \mathcal{H}(\vec{p'})$$

Other Task Types

- Single-choice & Multi-choice tasks
- Fill-in-blank tasks
- Collection tasks

Take-Away for System Design

O Data Model

- Relational model
- Open world assumption
- O Query Language
 - Extending SQL

- Supporting interactions with the crowd

O Query Processing

- Tree-based vs. Graph-based
- Crowd-powered operators
- Optimization: Quality, Cost, and Latency

Crowdsourcing DB Systems

o System Overview

- CrowdDB
- Qurk
- Deco
- CDAS
- CDB

Crowdsourcing Systems

Operator Design – Design Principles

Crowdsourcing Operators

Design Principles

Leveraging crowdsourcing techniques

- Quality Controlling
 - Truth Inference: inferring correct answers
 - Task Assignment: assigning tasks judiciously
- Cost Controlling
 - Answer Deduction: avoiding unnecessary costs
 - Task Selection: selecting most beneficial tasks
- Latency Controlling
 - Round Reduction: reducing # of rounds

- Task Design

• Interface Design: interacting with crowd wisely

Crowdsourced Selection

Objective

- Identifying items satisfying some conditions

○ Key Idea

- Task Assignment: cost vs. quality

Find **all** images containing SUV cars from an image set

 For each image
 # of

 YES answers
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

• (*x*,*y*): x YES, y No

• Truth Inference

- Output PASS?
- Output FAIL?

Task Assignment

of NO answers

Crowdsourced Selection

○ Key Idea

- Latency Controlling: cost vs. latency

Find 2 images with SUV cars from 100 images

Sequential

Round 1

Round 2

Round 3

Round 4

Parallel C: 100 L: 1

Hybrid C: 4 L: 3

Round 2

Round 3

SIGMOD'17 Tutorial A. D. Sarma et al.: Crowd-powered find algorithms. ICDE 2014: 964-975

Crowdsourced Join

Objective

- Identifying record pairs referring to same entity

○ Key Idea

-Answer Deduction, e.g., using Transitivity

Crowdsourced Join

○ Key Idea

- Task Selection, e.g., selecting beneficial tasks

One task deduced

- No task deduced
- Jiannan Wang, Guoliang Li, Tim Kraska, Michael J. Franklin, Jianhua Feng: Leveraging transitive relations for crowdsourced joins. SIGMOD 2013

SIGMOD'A Wintoria of gren, H. Garcia-Molina: Question Selection for Crowd Entity Resolution. PVLDB 6(6): 349-360 (2013)

Crowdsourced TopK/Sort

Objective

- Finding top-k items (or a ranked list) wrt. Criterion

o Key Idea

- Truth Inference: Resolve conflicts among crowd

Which picture visualizes the best SFU Campus?

• Ranking Inference over conflicts among crowd

D

- Max Likelihood Inference
- NP-hard

Crowdsourced TopK/Sort

○ Key Idea

- Task Selection: Most beneficial for getting the top-k results

What are the top-2 picture that visualizes the best SFU Campus?

The most beneficial task: Difficult to computers

Crowdsourced Collection

Objective

- Collecting a set of new items

○ Key Idea

- Truth Inference: Inferring item coverage

• Species Estimation Algo.

- Observing the rate at which new species are identified over time
- inferring how close to the true number of species you are

SIGMODANT Crowdsourced enumeration queries. ICDE 2013: 673-684

Crowdsourced Collection

○ Key Idea

- Task Assignment: satisfying result distribution

SIGM ODel a. Toistoication-Aware Crowdsourced Entity Collection. TKDE 2017

Collected

Entities

Worker Model

Estimation

Entities of w_m

{C, N, C, C, C, …}

Crowdsourced Fill

Objective

- Filling missing cells in a table

o Key Idea: Task Design

- Microtask vs. partially-filled table with voting

- Real-Time collaboration for concurrent workers
- Compensation scheme with budget

<i>name</i> \$0.03 ≜	nationality \$0.01	<i>position</i> \$0.01	caps \$0.05 ♦	<i>goals</i> \$0.01 ≜	\$0.02
Lionel Messi	Argentina	FW	83		16 H
Ronaldinho	Brazil	MF	Empty	Empty	10 H
Neymar	Brazil	FW	Empty	Empty	10 H
Iker Casillas	Spain	FW	150	0	1 4 11
Ronaldinho	Brazil	FW	Empty	33	16 19

Crowdsourced Count

Objective

- Estimating number of certain items

○ Key Idea

- Task Design: Leveraging crowd to estimate

Take-Away for Crowd Operators

	CrowdSelect	CrowdJoin	CrowdSort	CrowdCollect	CrowdFill	CrowdCount
Truth Inference	\checkmark	\checkmark	\checkmark	\checkmark	×	×
Task Assignment	\checkmark	×	1	\checkmark	×	×
Answer Deduction	×	1	×	×	×	×
Task Selection	×	1	V	×	×	×
Round Reduction	\checkmark	1	×	×	×	×
Interface Design	×	√	√	×	\checkmark	\checkmark

System Comparison

		CrowdDB	Qurk	Deco	CDAS	CDB
Crowd Powered Operators	CrowdSelect	\checkmark	\checkmark	\checkmark	\checkmark	√
	CrowdJoin	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	CrowdSort	\checkmark	\checkmark	×	×	√
	CrowdTopK	\checkmark	\checkmark	×	×	\checkmark
	CrowdMax	\checkmark	\checkmark	×	×	\checkmark
	CrowdMin	\checkmark	\checkmark	×	×	\checkmark
	CrowdCount	×	×	×	×	√
	CrowdCollect	\checkmark	×	\checkmark	×	\checkmark
	CrowdFill	\checkmark	×	\checkmark	\checkmark	\checkmark

System Comparison

		CrowdDB	Qurk	Deco	CDAS	CDB
Optimization Objectives	Cost	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Latency	×	×	×	\checkmark	\checkmark
	Quality	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Design Techniques	Truth Inference	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Task	×	×	×	×	\checkmark
	Assignment Answer	×	×	×	×	1
	Reasoning	~				
	Task Design	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Latency Reduction	×	×	×	\checkmark	\checkmark

Reference

- 1. M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb: answering queries with crowdsourcing. In SIGMOD, pages 61–72, 2011.
- 2. A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced databases: Query processing with people. In CIDR, pages 211–214, 2011.
- 3. H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina, N. Polyzotis, and J. Widom. Deco: A system for declarative crowdsourcing. PVLDB, 2012.
- 4. J. Fan, M. Zhang, S. Kok, M. Lu, and B. C. Ooi. Crowdop: Query optimization for declarative crowdsourcing systems. IEEE Trans. Knowl. Data Eng., 27(8):2078–2092, 2015.
- 5. G. Li, C. Chai, J. Fan, X. Weng, J. Li, Y. Zheng, Y. Li, X. Yu, X. Zhang, H. Yuan. CDB: Optimizing Queries with Crowd-Based Selections and Joins. in SIGMOD, 2017.
- 6. A. G. Parameswaran et al.: CrowdScreen: algorithms for filtering data with humans. SIGMOD Conference 2012: 361-372.
- 7. A. D. Sarma et al.: Crowd-powered find algorithms. ICDE 2014: 964-975.
- 8. Jiannan Wang, Guoliang Li, Tim Kraska, Michael J. Franklin, Jianhua Feng: Leveraging transitive relations for crowdsourced joins. SIGMOD 2013.
- 9. Donatella Firmani, Barna Saha, Divesh Srivastava: Online Entity Resolution Using an Oracle. PVLDB 2016.
- S. E. Whang, P. Lofgren, H. Garcia-Molina: Question Selection for Crowd Entity Resolution. PVLDB 6(6): 349-360 (2013).
- 11. S. Guo, et al. : So who won?: dynamic max discovery with the crowd. SIGMOD Conference 2012: 385-396.
- 12. Xiaohang Zhang, Guoliang Li, Jianhua Feng: Crowdsourced Top-k Algorithms: An Experimental Evaluation. PVLDB 2016.
- 13. B. Trushkowsky et al.: Crowdsourced enumeration queries. ICDE 2013: 673-684.
- 14. J. Fan et al.: Distribution-Aware Crowdsourced Entity Collection. TKDE 2017.
- 15. H. Park, J. Widom: CrowdFill: collecting structured data from the crowd. SIGMOD Conference 2014: 577-588.
- 16. Adam Marcus, David R. Karger, Samuel Madden, Rob Miller, Sewoong Oh: Counting with the Crowd. PVLDB 2012.

Outline

The 6 Crowdsourcing Challenges

- Benchmarking
- Scalability
- Truth Inference
- Privacy
- Macro-Tasks
- Mobile Crowdsourcing

1. Benchmarking

Database Benchmarks

TPC-C, TPC-H, TPC-DI,...

- Crowdsourcing
 No standard benchmarks
- Existing public datasets (link) are inadequate

1. Benchmarking

- Existing public datasets are inadequate, because:
- Each task often receives 5 or less answers
- Most tasks are single-label tasks
- Very few numeric tasks
- Lack ground truth
 - Expensive to get ground truth for 10K tasks

2. Scalability

 Hard to Scale in Crowdsourcing to tackle the 3Vs of Big Data?

- AIST SET CHARACTER CHARACTER LARGER CHARACTER SOCIAL THE COMPLEX SOCIAL THE COMPLE
- (1) workers are expensive;
 (2) answers can be erroneous;
 (3) existing works focus on specific problems, e.g., active learning (Mozafari et al. VLDB14), entity matching (Gokhale et al. SIGMOD14).

2. Scalability: Query Optimization

Query Processing in Traditional RDBMS

2. Scalability: Query Optimization

• Query optimization in crowdsourcing is challenging:

(1) handle 3 optimization objectives

(2) humans are more unpredictable than machines

Cost

3. Truth Inference

Not fully solved (Zheng et al. VLDB17)

- We have surveyed 20+ methods:
 - (1) No best method;

(2) The oldest method (David & Skene JRSS 1979) is the most robust;

(3) No robust method for numeric tasks (the baseline "Mean" performs the best !)

4. Privacy

• (1) Requester

Wants to protect the privacy of their tasks from workers

e.g., tasks may contain sensitive attributes, e.g., medical data.

4. Privacy

• (2) Workers

Want to have privacypreserving requirement & worker profile

e.g., personal info of workers can be inferred from the worker's answers, e.g., location, gender, etc.

5. Macro-Tasks

 Existing works focus on simple micro-tasks

Is Bill Gates currently the CEO of Microsoft ? O Yes O No Identify the sentiment of the tweet:

O Pos O Neu O Neg

 Hard to perform big and complex tasks, e.g., writing an essay

(1) macro-tasks are hard to be split and accomplished by multiple workers;
(2) workers may not be interested to perform a time-consuming macro-task.

6. Mobile Crowdsourcing

- Emerging mobile crowdsourcing platforms
 e.g., gMission (HKUST), ChinaCrowd (Tsinghua)
- Challenges

SIGM

(1) Other factors (e.g., spatial distance, mobile user interface) affect workers' latency and quality;

 (2) Different mechanisms traditional crowdsourcing platforms: workers request tasks from the platform;

for mobile crowdsourcing platform: only workers close to the crowdsourcing task can be selected.

Thanks ! Q & A

Guoliang Li Yudian Zheng Ju Fan Jiannan Wang Reynold Cheng Tsinghua Hong Kong Renmin SFU Hong Kong

Tsinghua University

Renmin University

