
CS224n: Natural Language Processing with Deep
Learning 1

1 Course Instructors: Christopher
Manning, Richard SocherLecture Notes: Part I

Word Vectors I: Introduction, SVD and Word2Vec 2
2 Authors: Francois Chaubard, Michael
Fang, Guillaume Genthial, Rohit
Mundra, Richard SocherWinter 2019

Keyphrases: Natural Language Processing. Word Vectors. Singu-
lar Value Decomposition. Skip-gram. Continuous Bag of Words
(CBOW). Negative Sampling. Hierarchical Softmax. Word2Vec.

This set of notes begins by introducing the concept of Natural
Language Processing (NLP) and the problems NLP faces today. We
then move forward to discuss the concept of representing words as
numeric vectors. Lastly, we discuss popular approaches to designing
word vectors.

1 Introduction to Natural Language Processing

We begin with a general discussion of what is NLP.

1.1 What is so special about NLP?

What’s so special about human (natural) language? Human language
is a system specifically constructed to convey meaning, and is not
produced by a physical manifestation of any kind. In that way, it is
very different from vision or any other machine learning task. Natural language is a dis-

crete/symbolic/categorical systemMost words are just symbols for an extra-linguistic entity : the
word is a signifier that maps to a signified (idea or thing).

For instance, the word "rocket" refers to the concept of a rocket,
and by extension can designate an instance of a rocket. There are
some exceptions, when we use words and letters for expressive sig-
naling, like in "Whooompaa". On top of this, the symbols of language
can be encoded in several modalities : voice, gesture, writing, etc
that are transmitted via continuous signals to the brain, which itself
appears to encode things in a continuous manner. (A lot of work in
philosophy of language and linguistics has been done to conceptu-
alize human language and distinguish words from their references,
meanings, etc. Among others, see works by Wittgenstein, Frege, Rus-
sell and Mill.)

1.2 Examples of tasks

There are different levels of tasks in NLP, from speech processing to
semantic interpretation and discourse processing. The goal of NLP is
to be able to design algorithms to allow computers to "understand"

cs224n: natural language processing with deep learning lecture notes: part i word

vectors i: introduction, svd and word2vec 2

natural language in order to perform some task. Example tasks come
in varying level of difficulty:

Easy

• Spell Checking

• Keyword Search

• Finding Synonyms

Medium

• Parsing information from websites, documents, etc.

Hard

• Machine Translation (e.g. Translate Chinese text to English)

• Semantic Analysis (What is the meaning of query statement?)

• Coreference (e.g. What does "he" or "it" refer to given a docu-
ment?)

• Question Answering (e.g. Answering Jeopardy questions).

1.3 How to represent words?

The first and arguably most important common denominator across
all NLP tasks is how we represent words as input to any of our mod-
els. Much of the earlier NLP work that we will not cover treats words
as atomic symbols. To perform well on most NLP tasks we first need
to have some notion of similarity and difference between words. With
word vectors, we can quite easily encode this ability in the vectors
themselves (using distance measures such as Jaccard, Cosine, Eu-
clidean, etc).

2 Word Vectors

There are an estimated 13 million tokens for the English language
but are they all completely unrelated? Feline to cat, hotel to motel?
I think not. Thus, we want to encode word tokens each into some
vector that represents a point in some sort of "word" space. This is
paramount for a number of reasons but the most intuitive reason is
that perhaps there actually exists some N-dimensional space (such
that N � 13 million) that is sufficient to encode all semantics of
our language. Each dimension would encode some meaning that
we transfer using speech. For instance, semantic dimensions might

cs224n: natural language processing with deep learning lecture notes: part i word

vectors i: introduction, svd and word2vec 3

indicate tense (past vs. present vs. future), count (singular vs. plural),
and gender (masculine vs. feminine). One-hot vector: Represent every word

as an R|V|×1 vector with all 0s and one
1 at the index of that word in the sorted
english language.

So let’s dive into our first word vector and arguably the most
simple, the one-hot vector: Represent every word as an R|V|×1 vector
with all 0s and one 1 at the index of that word in the sorted english
language. In this notation, |V| is the size of our vocabulary. Word
vectors in this type of encoding would appear as the following:

waardvark =


1
0
0
...
0

, wa =


0
1
0
...
0

, wat =


0
0
1
...
0

, · · · wzebra =


0
0
0
...
1

 Fun fact: The term "one-hot" comes
from digital circuit design, meaning "a
group of bits among which the legal
combinations of values are only those
with a single high (1) bit and all the
others low (0)".

We represent each word as a completely independent entity. As
we previously discussed, this word representation does not give us
directly any notion of similarity. For instance,

(whotel)Twmotel = (whotel)Twcat = 0
Denotational semantics: The concept
of representing an idea as a symbol (a
word or a one-hot vector). It is sparse
and cannot capture similarity. This is a
"localist" representation.

So maybe we can try to reduce the size of this space from R|V| to
something smaller and thus find a subspace that encodes the rela-
tionships between words.

3 SVD Based Methods

For this class of methods to find word embeddings (otherwise known
as word vectors), we first loop over a massive dataset and accumu-
late word co-occurrence counts in some form of a matrix X, and then
perform Singular Value Decomposition on X to get a USVT decom-
position. We then use the rows of U as the word embeddings for all
words in our dictionary. Let us discuss a few choices of X.

3.1 Word-Document Matrix
Distributional semantics: The concept
of representing the meaning of a word
based on the context in which it usually
appears. It is dense and can better
capture similarity.

As our first attempt, we make the bold conjecture that words that
are related will often appear in the same documents. For instance,
"banks", "bonds", "stocks", "money", etc. are probably likely to ap-
pear together. But "banks", "octopus", "banana", and "hockey" would
probably not consistently appear together. We use this fact to build
a word-document matrix, X in the following manner: Loop over
billions of documents and for each time word i appears in docu-
ment j, we add one to entry Xij. This is obviously a very large matrix
(R|V|×M) and it scales with the number of documents (M). So per-
haps we can try something better.

cs224n: natural language processing with deep learning lecture notes: part i word

vectors i: introduction, svd and word2vec 4

3.2 Window based Co-occurrence Matrix

The same kind of logic applies here however, the matrix X stores
co-occurrences of words thereby becoming an affinity matrix. In this
method we count the number of times each word appears inside a
window of a particular size around the word of interest. We calculate
this count for all the words in corpus. We display an example below.
Let our corpus contain just three sentences and the window size be 1: Using Word-Word Co-occurrence

Matrix:

• Generate |V| × |V| co-occurrence
matrix, X.

• Apply SVD on X to get X = USVT .

• Select the first k columns of U to get
a k-dimensional word vectors.

• ∑k
i=1 σi

∑
|V|
i=1 σi

indicates the amount of

variance captured by the first k
dimensions.

1. I enjoy flying.

2. I like NLP.

3. I like deep learning.

The resulting counts matrix will then be:

X =



I like enjoy deep learning NLP f lying .

I 0 2 1 0 0 0 0 0
like 2 0 0 1 0 1 0 0

enjoy 1 0 0 0 0 0 1 0
deep 0 1 0 0 1 0 0 0

learning 0 0 0 1 0 0 0 1
NLP 0 1 0 0 0 0 0 1

f lying 0 0 1 0 0 0 0 1
. 0 0 0 0 1 1 1 0


3.3 Applying SVD to the cooccurrence matrix

We now perform SVD on X, observe the singular values (the diago-
nal entries in the resulting S matrix), and cut them off at some index
k based on the desired percentage variance captured:

∑k
i=1 σi

∑
|V|
i=1 σi

We then take the submatrix of U1:|V|,1:k to be our word embedding
matrix. This would thus give us a k-dimensional representation of
every word in the vocabulary.

Applying SVD to X:


|V|

|V| X

 =


|V|

| |
|V| u1 u2 · · ·

| |




|V|

σ1 0 · · ·
|V| 0 σ2 · · ·

...
...

. . .




|V|

− v1 −
|V| − v2 −

...



cs224n: natural language processing with deep learning lecture notes: part i word

vectors i: introduction, svd and word2vec 5

Reducing dimensionality by selecting first k singular vectors:


|V|

|V| X̂

 =


k

| |
|V| u1 u2 · · ·

| |




k

σ1 0 · · ·
k 0 σ2 · · ·

...
...

. . .




|V|

− v1 −
k − v2 −

...


Both of these methods give us word vectors that are more than

sufficient to encode semantic and syntactic (part of speech) informa-
tion but are associated with many other problems:

• The dimensions of the matrix change very often (new words are
added very frequently and corpus changes in size). SVD based methods do not scale

well for big matrices and it is hard to
incorporate new words or documents.
Computational cost for a m× n matrix
is O(mn2)

• The matrix is extremely sparse since most words do not co-occur.

• The matrix is very high dimensional in general (≈ 106 × 106)

• Quadratic cost to train (i.e. to perform SVD)

• Requires the incorporation of some hacks on X to account for the
drastic imbalance in word frequency

However, count-based method make an
efficient use of the statisticsSome solutions to exist to resolve some of the issues discussed above:

• Ignore function words such as "the", "he", "has", etc.

• Apply a ramp window – i.e. weight the co-occurrence count based
on distance between the words in the document.

• Use Pearson correlation and set negative counts to 0 instead of
using just raw count.

As we see in the next section, iteration based methods solve many
of these issues in a far more elegant manner.

4 Iteration Based Methods - Word2vec
For an overview of Word2vec, a note
map can be found here : https://
myndbook.com/view/4900

A detailed summary of word2vec mod-
els can also be found here [Rong, 2014]

Iteration-based methods capture cooc-
currence of words one at a time instead
of capturing all cooccurrence counts
directly like in SVD methods.

Let us step back and try a new approach. Instead of computing and
storing global information about some huge dataset (which might be
billions of sentences), we can try to create a model that will be able
to learn one iteration at a time and eventually be able to encode the
probability of a word given its context.

The idea is to design a model whose parameters are the word vec-
tors. Then, train the model on a certain objective. At every iteration
we run our model, evaluate the errors, and follow an update rule
that has some notion of penalizing the model parameters that caused
the error. Thus, we learn our word vectors. This idea is a very old

https://myndbook.com/view/4900
https://myndbook.com/view/4900

cs224n: natural language processing with deep learning lecture notes: part i word

vectors i: introduction, svd and word2vec 6

one dating back to 1986. We call this method "backpropagating" the
errors (see [Rumelhart et al., 1988]). The simpler the model and the
task, the faster it will be to train it. Context of a word:

The context of a word is the set of m
surrounding words. For instance, the
m = 2 context of the word "fox" in the
sentence "The quick brown fox jumped
over the lazy dog" is {"quick", "brown",
"jumped", "over"}.

Several approaches have been tested. [Collobert et al., 2011] design
models for NLP whose first step is to transform each word in a vec-
tor. For each special task (Named Entity Recognition, Part-of-Speech
tagging, etc.) they train not only the model’s parameters but also the
vectors and achieve great performance, while computing good word
vectors! Other interesting reading would be [Bengio et al., 2003]. This model relies on a very important

hypothesis in linguistics, distributional
similarity, the idea that similar words
have similar context.

In this class, we will present a simpler, more recent, probabilistic
method by [Mikolov et al., 2013] : word2vec. Word2vec is a software
package that actually includes :

- 2 algorithms: continuous bag-of-words (CBOW) and skip-gram.
CBOW aims to predict a center word from the surrounding context in
terms of word vectors. Skip-gram does the opposite, and predicts the
distribution (probability) of context words from a center word.

- 2 training methods: negative sampling and hierarchical softmax.
Negative sampling defines an objective by sampling negative exam-
ples, while hierarchical softmax defines an objective using an efficient
tree structure to compute probabilities for all the vocabulary.

4.1 Language Models (Unigrams, Bigrams, etc.)

First, we need to create such a model that will assign a probability to
a sequence of tokens. Let us start with an example:

"The cat jumped over the puddle."

A good language model will give this sentence a high probability
because this is a completely valid sentence, syntactically and semanti-
cally. Similarly, the sentence "stock boil fish is toy" should have a very
low probability because it makes no sense. Mathematically, we can
call this probability on any given sequence of n words:

P(w1, w2, · · · , wn)

We can take the unary language model approach and break apart
this probability by assuming the word occurrences are completely
independent:

P(w1, w2, · · · , wn) =
n

∏
i=1

P(wi)

Unigram model:

P(w1, w2, · · · , wn) =
n

∏
i=1

P(wi)

However, we know this is a bit ludicrous because we know the
next word is highly contingent upon the previous sequence of words.
And the silly sentence example might actually score highly. So per-
haps we let the probability of the sequence depend on the pairwise

cs224n: natural language processing with deep learning lecture notes: part i word

vectors i: introduction, svd and word2vec 7

probability of a word in the sequence and the word next to it. We call
this the bigram model and represent it as:

P(w1, w2, · · · , wn) =
n

∏
i=2

P(wi|wi−1)

Bigram model:

P(w1, w2, · · · , wn) =
n

∏
i=2

P(wi |wi−1)

Again this is certainly a bit naive since we are only concerning
ourselves with pairs of neighboring words rather than evaluating a
whole sentence, but as we will see, this representation gets us pretty
far along. Note in the Word-Word Matrix with a context of size 1, we
basically can learn these pairwise probabilities. But again, this would
require computing and storing global information about a massive
dataset.

Now that we understand how we can think about a sequence of
tokens having a probability, let us observe some example models that
could learn these probabilities.

4.2 Continuous Bag of Words Model (CBOW)

One approach is to treat {"The", "cat", ’over", "the’, "puddle"} as a
context and from these words, be able to predict or generate the
center word "jumped". This type of model we call a Continuous Bag
of Words (CBOW) Model. CBOW Model:

Predicting a center word from the
surrounding context

For each word, we want to learn 2

vectors
- v: (input vector) when the word is in

the context
- u: (output vector) when the word is

in the center

Let’s discuss the CBOW Model above in greater detail. First, we
set up our known parameters. Let the known parameters in our
model be the sentence represented by one-hot word vectors. The
input one hot vectors or context we will represent with an x(c). And
the output as y(c) and in the CBOW model, since we only have one
output, so we just call this y which is the one hot vector of the known
center word. Now let’s define our unknowns in our model.

Notation for CBOW Model:

• wi : Word i from vocabulary V

• V ∈ Rn×|V|: Input word matrix

• vi : i-th column of V , the input vector
representation of word wi

• U ∈ R|V|×n: Output word matrix

• ui : i-th row of U , the output vector
representation of word wi

We create two matrices, V ∈ Rn×|V| and U ∈ R|V|×n. Where n
is an arbitrary size which defines the size of our embedding space.
V is the input word matrix such that the i-th column of V is the n-
dimensional embedded vector for word wi when it is an input to this
model. We denote this n × 1 vector as vi. Similarly, U is the output
word matrix. The j-th row of U is an n-dimensional embedded vector
for word wj when it is an output of the model. We denote this row of
U as uj. Note that we do in fact learn two vectors for every word wi

(i.e. input word vector vi and output word vector ui).

We breakdown the way this model works in these steps:

1. We generate our one hot word vectors for the input context of size
m : (x(c−m), . . . , x(c−1), x(c+1), . . . , x(c+m) ∈ R|V|).

cs224n: natural language processing with deep learning lecture notes: part i word

vectors i: introduction, svd and word2vec 8

2. We get our embedded word vectors for the context (vc−m =

Vx(c−m), vc−m+1 = Vx(c−m+1), . . ., vc+m = Vx(c+m) ∈ Rn)

3. Average these vectors to get v̂ = vc−m+vc−m+1+...+vc+m
2m ∈ Rn

4. Generate a score vector z = U v̂ ∈ R|V|. As the dot product of
similar vectors is higher, it will push similar words close to each
other in order to achieve a high score.

5. Turn the scores into probabilities ŷ = softmax(z) ∈ R|V|. The softmax is an operator that we’ll
use very frequently. It transforms a vec-
tor into a vector whose i-th component

is eŷi

∑
|V|
k=1 eŷk

.

- exponentiate to make positive
- Dividing by ∑|V|k=1 eŷk normalizes the

vector (∑n
k=1 ŷk = 1) to give probability

6. We desire our probabilities generated, ŷ ∈ R|V|, to match the true
probabilities, y ∈ R|V|, which also happens to be the one hot vector
of the actual word.

Figure 1: This image demonstrates how
CBOW works and how we must learn
the transfer matrices

So now that we have an understanding of how our model would
work if we had a V and U , how would we learn these two matrices?
Well, we need to create an objective function. Very often when we
are trying to learn a probability from some true probability, we look
to information theory to give us a measure of the distance between
two distributions. Here, we use a popular choice of distance/loss
measure, cross entropy H(ŷ, y).

The intuition for the use of cross-entropy in the discrete case can
be derived from the formulation of the loss function:

H(ŷ, y) = −
|V|

∑
j=1

yj log(ŷj)

ŷ 7→ H(ŷ, y) is minimum when ŷ = y.
Then, if we found a ŷ such that H(ŷ, y)
is close to the minimum, we have ŷ ≈ y.
This means that our model is very good
at predicting the center word!

Let us concern ourselves with the case at hand, which is that y
is a one-hot vector. Thus we know that the above loss simplifies to
simply:

H(ŷ, y) = −yi log(ŷi)

In this formulation, c is the index where the correct word’s one
hot vector is 1. We can now consider the case where our predic-
tion was perfect and thus ŷc = 1. We can then calculate H(ŷ, y) =

−1 log(1) = 0. Thus, for a perfect prediction, we face no penalty or
loss. Now let us consider the opposite case where our prediction was
very bad and thus ŷc = 0.01. As before, we can calculate our loss to
be H(ŷ, y) = −1 log(0.01) ≈ 4.605. We can thus see that for proba-
bility distributions, cross entropy provides us with a good measure of
distance. We thus formulate our optimization objective as: To learn the vectors (the matrices U and

V) CBOW defines a cost that measures
how good it is at predicting the center
word. Then, we optimize this cost by
updating the matrices U and V thanks
to stochastic gradient descent

cs224n: natural language processing with deep learning lecture notes: part i word

vectors i: introduction, svd and word2vec 9

minimize J = − log P(wc|wc−m, . . . , wc−1, wc+1, . . . , wc+m)

= − log P(uc|v̂)

= − log
exp(uT

c v̂)

∑
|V|
j=1 exp(uT

j v̂)

= −uT
c v̂ + log

|V|

∑
j=1

exp(uT
j v̂)

We use stochastic gradient descent to update all relevant word vec-
tors uc and vj. Stochastic gradient descent (SGD)

computes gradients for a window and
updates the parameters
Unew ← Uold − α∇U J
Vold ← Vold − α∇V J

4.3 Skip-Gram Model

Skip-Gram Model:
Predicting surrounding context words

given a center word

Another approach is to create a model such that given the center
word "jumped", the model will be able to predict or generate the
surrounding words "The", "cat", "over", "the", "puddle". Here we call
the word "jumped" the context. We call this type of model a Skip-
Gram model. Notation for Skip-Gram Model:

• wi : Word i from vocabulary V

• V ∈ Rn×|V|: Input word matrix

• vi : i-th column of V , the input vector
representation of word wi

• U ∈ Rn×|V|: Output word matrix

• ui : i-th row of U , the output vector
representation of word wi

Let’s discuss the Skip-Gram model above. The setup is largely the
same but we essentially swap our x and y i.e. x in the CBOW are
now y and vice-versa. The input one hot vector (center word) we will
represent with an x (since there is only one). And the output vectors
as y(j). We define V and U the same as in CBOW.

Figure 2: This image demonstrates how
Skip-Gram works and how we must
learn the transfer matrices

We breakdown the way this model works in these 6 steps:

1. We generate our one hot input vector x ∈ R|V| of the center word.

2. We get our embedded word vector for the center word vc = Vx ∈
Rn

3. Generate a score vector z = Uvc.

4. Turn the score vector into probabilities, ŷ = softmax(z). Note
that ŷc−m, . . . , ŷc−1, ŷc+1, . . . , ŷc+m are the probabilities of observing
each context word.

5. We desire our probability vector generated to match the true prob-
abilities which is y(c−m), . . . , y(c−1), y(c+1), . . . , y(c+m), the one hot
vectors of the actual output.

As in CBOW, we need to generate an objective function for us to
evaluate the model. A key difference here is that we invoke a Naive
Bayes assumption to break out the probabilities. If you have not
seen this before, then simply put, it is a strong (naive) conditional

cs224n: natural language processing with deep learning lecture notes: part i word

vectors i: introduction, svd and word2vec 10

independence assumption. In other words, given the center word, all
output words are completely independent.

minimize J = − log P(wc−m, . . . , wc−1, wc+1, . . . , wc+m|wc)

= − log
2m

∏
j=0,j 6=m

P(wc−m+j|wc)

= − log
2m

∏
j=0,j 6=m

P(uc−m+j|vc)

= − log
2m

∏
j=0,j 6=m

exp(uT
c−m+jvc)

∑
|V|
k=1 exp(uT

k vc)

= −
2m

∑
j=0,j 6=m

uT
c−m+jvc + 2m log

|V|

∑
k=1

exp(uT
k vc)

With this objective function, we can compute the gradients with
respect to the unknown parameters and at each iteration update
them via Stochastic Gradient Descent. Only one probability vector ŷ is com-

puted. Skip-gram treats each context
word equally : the models computes
the probability for each word of appear-
ing in the context independently of its
distance to the center word

Note that

J = −
2m

∑
j=0,j 6=m

log P(uc−m+j|vc)

=
2m

∑
j=0,j 6=m

H(ŷ, yc−m+j)

where H(ŷ, yc−m+j) is the cross-entropy between the probability
vector ŷ and the one-hot vector yc−m+j.

4.4 Negative Sampling
Loss functions J for CBOW and Skip-
Gram are expensive to compute because
of the softmax normalization, where we
sum over all |V| scores!

Lets take a second to look at the objective function. Note that the
summation over |V| is computationally huge! Any update we do or
evaluation of the objective function would take O(|V|) time which
if we recall is in the millions. A simple idea is we could instead just
approximate it.

For every training step, instead of looping over the entire vocabu-
lary, we can just sample several negative examples! We "sample" from
a noise distribution (Pn(w)) whose probabilities match the ordering
of the frequency of the vocabulary. To augment our formulation of
the problem to incorporate Negative Sampling, all we need to do is
update the:

• objective function

cs224n: natural language processing with deep learning lecture notes: part i word

vectors i: introduction, svd and word2vec 11

• gradients

• update rules

Mikolov et al. present Negative Sampling in Distributed

Representations of Words and Phrases and their Compo-
sitionality. While negative sampling is based on the Skip-Gram
model, it is in fact optimizing a different objective. Consider a pair
(w, c) of word and context. Did this pair come from the training
data? Let’s denote by P(D = 1|w, c) the probability that (w, c) came
from the corpus data. Correspondingly, P(D = 0|w, c) will be the
probability that (w, c) did not come from the corpus data. First, let’s
model P(D = 1|w, c) with the sigmoid function: The sigmoid function

σ(x) = 1
1+e−x

is the 1D version of the softmax and
can be used to model a probability

Figure 3: Sigmoid function

P(D = 1|w, c, θ) = σ(vT
c vw) =

1

1 + e(−vT
c vw)

Now, we build a new objective function that tries to maximize the
probability of a word and context being in the corpus data if it in-
deed is, and maximize the probability of a word and context not
being in the corpus data if it indeed is not. We take a simple maxi-
mum likelihood approach of these two probabilities. (Here we take θ

to be the parameters of the model, and in our case it is V and U .)

θ = argmax
θ

∏
(w,c)∈D

P(D = 1|w, c, θ) ∏
(w,c)∈D̃

P(D = 0|w, c, θ)

= argmax
θ

∏
(w,c)∈D

P(D = 1|w, c, θ) ∏
(w,c)∈D̃

(1− P(D = 1|w, c, θ))

= argmax
θ

∑
(w,c)∈D

log P(D = 1|w, c, θ) + ∑
(w,c)∈D̃

log(1− P(D = 1|w, c, θ))

= argmax
θ

∑
(w,c)∈D

log
1

1 + exp(−uT
wvc)

+ ∑
(w,c)∈D̃

log(1− 1
1 + exp(−uT

wvc)
)

= argmax
θ

∑
(w,c)∈D

log
1

1 + exp(−uT
wvc)

+ ∑
(w,c)∈D̃

log(
1

1 + exp(uT
wvc)

)

Note that maximizing the likelihood is the same as minimizing the
negative log likelihood

J = − ∑
(w,c)∈D

log
1

1 + exp(−uT
wvc)

− ∑
(w,c)∈D̃

log(
1

1 + exp(uT
wvc)

)

Note that D̃ is a "false" or "negative" corpus. Where we would have
sentences like "stock boil fish is toy". Unnatural sentences that should
get a low probability of ever occurring. We can generate D̃ on the fly
by randomly sampling this negative from the word bank.

cs224n: natural language processing with deep learning lecture notes: part i word

vectors i: introduction, svd and word2vec 12

For skip-gram, our new objective function for observing the con-
text word c−m + j given the center word c would be

− log σ(uT
c−m+j · vc)−

K

∑
k=1

log σ(−ũT
k · vc)

To compare with the regular softmax
loss for skip-gram
−uT

c−m+jvc + log ∑|V|k=1 exp(uT
k vc)

For CBOW, our new objective function for observing the center
word uc given the context vector v̂ = vc−m+vc−m+1+...+vc+m

2m would be

− log σ(uT
c · v̂)−

K

∑
k=1

log σ(−ũT
k · v̂)

To compare with the regular softmax
loss for CBOW
−uT

c v̂ + log ∑|V|j=1 exp(uT
j v̂)

In the above formulation, {ũk|k = 1 . . . K} are sampled from Pn(w).
Let’s discuss what Pn(w) should be. While there is much discussion
of what makes the best approximation, what seems to work best is
the Unigram Model raised to the power of 3/4. Why 3/4? Here’s an
example that might help gain some intuition:

is: 0.93/4 = 0.92
Constitution: 0.093/4 = 0.16
bombastic: 0.013/4 = 0.032

"Bombastic" is now 3x more likely to be sampled while "is" only
went up marginally.

4.5 Hierarchical Softmax

Mikolov et al. also present hierarchical softmax as a much more
efficient alternative to the normal softmax. In practice, hierarchical
softmax tends to be better for infrequent words, while negative sam-
pling works better for frequent words and lower dimensional vectors. Hierarchical Softmax uses a binary

tree where leaves are the words. The
probability of a word being the output
word is defined as the probability
of a random walk from the root to
that word’s leaf. Computational cost
becomes O(log(|V|)) instead of O(|V|).

Hierarchical softmax uses a binary tree to represent all words in
the vocabulary. Each leaf of the tree is a word, and there is a unique
path from root to leaf. In this model, there is no output representation
for words. Instead, each node of the graph (except the root and the
leaves) is associated to a vector that the model is going to learn.

In this model, the probability of a word w given a vector wi,
P(w|wi), is equal to the probability of a random walk starting in
the root and ending in the leaf node corresponding to w. The main
advantage in computing the probability this way is that the cost is
only O(log(|V|)), corresponding to the length of the path.

Figure 4: Binary tree for Hierarchical
softmax

Let’s introduce some notation. Let L(w) be the number of nodes
in the path from the root to the leaf w. For instance, L(w2) in Figure
4 is 3. Let’s write n(w, i) as the i-th node on this path with associated

cs224n: natural language processing with deep learning lecture notes: part i word

vectors i: introduction, svd and word2vec 13

vector vn(w,i). So n(w, 1) is the root, while n(w, L(w)) is the father
of w. Now for each inner node n, we arbitrarily choose one of its
children and call it ch(n) (e.g. always the left node). Then, we can
compute the probability as

P(w|wi) =
L(w)−1

∏
j=1

σ([n(w, j + 1) = ch(n(w, j))] · vT
n(w,j)vwi)

where

[x] =

1 if x is true

−1 otherwise
.

and σ(·) is the sigmoid function.
This formula is fairly dense, so let’s examine it more closely.
First, we are computing a product of terms based on the shape of

the path from the root (n(w, 1)) to the leaf (w). If we assume ch(n) is
always the left node of n, then term [n(w, j + 1) = ch(n(w, j))] returns
1 when the path goes left, and -1 if right.

Furthermore, the term [n(w, j + 1) = ch(n(w, j))] provides normal-
ization. At a node n, if we sum the probabilities for going to the left
and right node, you can check that for any value of vT

n vwi ,

σ(vT
n vwi) + σ(−vT

n vwi) = 1

The normalization also ensures that ∑
|V|
w=1 P(w|wi) = 1, just as in

the original softmax.
Finally, we compare the similarity of our input vector vwi to each

inner node vector vT
n(w,j) using a dot product. Let’s run through an

example. Taking w2 in Figure 4, we must take two left edges and
then a right edge to reach w2 from the root, so

P(w2|wi) = p(n(w2, 1), left) · p(n(w2, 2), left) · p(n(w2, 3), right)

= σ(vT
n(w2,1)vwi) · σ(v

T
n(w2,2)vwi) · σ(−vT

n(w2,3)vwi)

To train the model, our goal is still to minimize the negative log
likelihood − log P(w|wi). But instead of updating output vectors per
word, we update the vectors of the nodes in the binary tree that are
in the path from root to leaf node.

The speed of this method is determined by the way in which the
binary tree is constructed and words are assigned to leaf nodes.
Mikolov et al. use a binary Huffman tree, which assigns frequent
words shorter paths in the tree.

References

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A
neural probabilistic language model. J. Mach. Learn. Res., 3:1137–1155.

cs224n: natural language processing with deep learning lecture notes: part i word

vectors i: introduction, svd and word2vec 14

[Collobert et al., 2011] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu,
K., and Kuksa, P. P. (2011). Natural language processing (almost) from scratch.
CoRR, abs/1103.0398.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient
estimation of word representations in vector space. CoRR, abs/1301.3781.

[Rong, 2014] Rong, X. (2014). word2vec parameter learning explained. CoRR,
abs/1411.2738.

[Rumelhart et al., 1988] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988).
Neurocomputing: Foundations of research. chapter Learning Representations by
Back-propagating Errors, pages 696–699. MIT Press, Cambridge, MA, USA.

	Introduction to Natural Language Processing
	Word Vectors
	SVD Based Methods
	Iteration Based Methods - Word2vec

