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CAN MACHINES “LEARN” FINANCE?∗
Ronen Israela, Bryan Kellya,b and Tobias Moskowitza,b

Machine learning for asset management faces a unique set of challenges that differ
markedly from other domains where machine learning has excelled. Understanding these
differences is critical for developing impactful approaches and realistic expectations for
machine learning in asset management. We discuss a variety of beneficial use cases and
potential pitfalls, and emphasize the importance of economic theory and human expertise
for achieving success through financial machine learning.

1 Introduction

There are many potential places where machine
learning can be used to improve our understand-
ing of financial markets. Return prediction is the
most important task underlying the portfolio con-
struction problem that lies at the heart of the
investing industry. Our discussion focuses on the
unique challenges in applying machine learning
to return prediction and aims to establish realistic
expectations for how and where machine learning
is and will be impactful in asset management.

We begin with an overview of machine learn-
ing, and why it has emerged as a topic of
conversation (in asset management and other
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fields) that is distinct from statistics more broadly.
Next, we characterize basic conditions in which
machine learning thrives and provide exam-
ples of how these conditions were met in some
famous machine learning success stories. Next,
we argue that finance—and return prediction in
particular—faces a challenging set of conditions
that differ markedly from other domains where
machine learning has excelled. We discuss why
it is crucial to understand these differences in
order to develop effective approaches and realistic
expectations for machine learning in asset man-
agement. Finally, we outline some beneficial use
cases for financial machine learning. We conclude
with a view that machine learning is the most
recent embodiment of the longstanding quan-
titative investing paradigm—the idea of using
data-driven approaches to build more efficient
portfolios—and argue that it is a natural evolution
of quantitative tools in asset management, and not
a revolutionary shift in the business model.
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2 What is machine earning?

“Machine learning is the study of computer algo-
rithms that allow computer programs to auto-
matically improve through experience.” This
definition from Mitchell (1997) provides an ele-
gant and concise summary of machine learning
as a broad research discipline. It captures how
impactful machine learning has the potential to
be in just about any application one can fathom.

Mitchell’s definition also encompasses large
swathes of traditional quantitative investment
research (and much of the field of statistics more
broadly). For investment practitioners, then, it
is helpful to distinguish the finer aspects of cut-
ting edge machine learning that are differentiated
from traditional quant research, such as the abil-
ity to study thousands of predictors in a single
model, or the ability to survey forecasts from a
wide variety of models rather than relying on the
quant researcher to settle on a single model at the
outset.

To this end, Gu, Kelly, and Xiu (GKX, forthcom-
ing) propose a more detailed working definition
of machine learning in their study of financial
markets. They note that,

The definition of “machine learning” is inchoate and is
often context specific. We use the term to describe (i) a
diverse collection of high-dimensional models for statisti-
cal prediction, combined with (ii) so-called “regularization”
methods for model selection and mitigation of overfit, and
(iii) efficient algorithms for searching among a vast number
of potential model specifications.

The statement begins with a reminder of the
conflicting perspectives—ranging from hype to
skepticism (and sometimes confusion)—often
heard in asset managers’ discussions of machine
learning. These conflicts originate from the fact
that machine learning is a quickly evolving and
technical field, which means that most people are
still developing a basic understanding of it. This

gives rise to different parties using highly vari-
able terminology and standards when discussing
machine learning, usually shaped to suit their
own marketing purposes. But first and foremost,
one should recognize that, in any of its incar-
nations, machine learning amounts to a set of
procedures for estimating a statistical model and
using that model to make decisions. So, at its core,
machine learning need not be differentiated from
applied statistical analysis more generally. Most
of the ideas underlying machine learning have
lived comfortably under the umbrella of statistics
for decades.

So why have we moved to using new terminol-
ogy to describe old ideas? Above and beyond
the marketing angle—machine learning is a sexy
name that carries the connotation of bleeding
edge Silicon Valley technology—there are at least
three substantive reasons for this shift. First, the
historical practical usage of statistics was fre-
quently confined to “small” models—those with
a handful of input predictor variables (or “fea-
tures” in ML terminology) and simple, often
linear, association rules between those inputs
and the output (i.e., dependent variable) of inter-
est. The term “machine learning” has come to
serve as a shorthand to signal an explicit interest
in “large” models, those with many input vari-
ables and/or those allowing for complex nonlinear
associations between the inputs and output.

This idea is captured by part (i) of the GXK defini-
tion above. In order to learn through experience,
the machine needs a representation of what it is
trying to learn, which requires a research choice.
Machine learning brings an open-mindedness for
statistical representations that are richly param-
eterized and often nonlinear. Such models are
of course not new to statistics, so it would be
misleading to describe this as a contrast with
“traditional” statistics. But it is fair to say that
machine learning specializes in this sophisticated
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end of the model spectrum. Small models are rigid
and oversimplified, but have the virtue that they
can be used with small data sets. They are also
“robust” in the sense that their behavior can be
relatively insensitive to reasonable changes in the
data. Large and sophisticated models are much
more flexible, but can also suffer from poor out-
of-sample performance when they overfit noise in
the system. Researchers turn to models like these
when they believe the benefits from more accu-
rately describing the complexities of real-world
phenomena outweigh the costs of potential over-
fit. Part (i) of this definition also points out that
the primary objective of machine learning is to
generate accurate predictions. As emphasized by
Breiman et al. (2001), its focus on maximizing
prediction accuracy in the face of an unknown
data model is the central differentiating feature of
machine learning from the traditional statistical
objective of estimating a known data-generating
model and conducting hypothesis tests.

Second, machine learning seeks to choose a
preferred model from a “diverse collection” of
candidate models. Again, this idea has a long
history in statistics under the heading of “model
selection” and therefore is not a new contribution
of machine learning. But the process of searching
through many models to find the best performer
is characteristic of essentially all machine learn-
ing methods—it is closely connected with what
machine learners call model “tuning.” Of course,
looking at multiple models and selecting the top
performers in-sample mechanically leads to over-
fit and poor out-of-sample performance. Because
of this, the model search process is always accom-
panied by so-called “regularization” techniques
and methods for identifying models that are likely
to perform best out-of-sample. Regularization
is a blanket term for constraining the size of
a model. An optimal model is a “Goldilocks”
model. It is large enough so that it can reli-
ably identify the true and potentially complex

predictive relationships in the data, but not so
flexible that it overfits and suffers out-of-sample.
Regularization methods encourage smaller mod-
els, and make sure that a richer model only gets
selected if it is likely to give a genuine boost
to out-of-sample prediction accuracy. A corner-
stone method in the model selection process is
cross-validation, in which the researcher simu-
lates out-of-sample tests in historical data and
picks models that would have performed best in
these “as-if” out-of-sample scenarios. Element
(ii) of our machine learning definition describes
refinements in implementation that emphasize
reliable out-of-sample performance in order to
explicitly guard against overfit.

Third, and perhaps the clearest differentiator of
machine learning from traditional statistics is its
innovative approaches to model optimization. In
truly big data environments, the computational
demands of model estimation can be exorbi-
tant. To ease this burden, machine learning has
developed a variety of approximate and com-
putationally efficient optimization routines. For
example, model estimation traditionally uses all
data points in every step of an iterative opti-
mization routine. In big data environments, it
is usually overkill to use the full data set in
optimization, and optimizers can be dramatically
accelerated with little loss of accuracy by instead
using random subsets of the data. This idea is
the foundation of the “stochastic gradient descent
(SGD)” optimization routine that is a staple in
machine learning implementation. Element (iii)
describes innovative machine learning solutions
such as SGD and early stopping that are designed
to approximate an optimal specification with large
reductions in computational cost.

Lastly, the differentiation between machine learn-
ing and statistics is based in large part on how
ubiquitous machine learning has become in a wide
range of commercial problems. Traditionally,
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statistics showed up in business processes primar-
ily in the form of testing—such as determining
whether failure rates of an engine part exceeded
a given threshold or evaluating efficacy of a new
drug. Machine learning focuses on maximizing
predictive accuracy, and as such it finds nat-
ural uses in every commercial application one
can imagine. Much of the commercial success of
machine learning has emerged from recognizing
that many pre-conceived approaches to problem
solving (largely based on deterministic computer
algorithms) can be improved with algorithms that
adapt to feedback in the form of data. That is, giv-
ing statistics and prediction a more direct role in
commercial processes leads to better products and
services.

3 Where has machine learning worked?

The gamut of famous machine learning success
stories—problems like image and voice recog-
nition, strategic gaming, autonomous vehicles,
and robotics—occurs in environments with two
critical conditions in common. Each is a truly
big data environment, and each is a high signal-
to-noise ratio environment. Understanding these
conditions, and how they differ in many financial
applications, is key to developing a foundational
understanding of financial machine learning.

Machine learning thrives in data-rich envi-
ronments. Models like neural networks are
valuable for describing complex predictive asso-
ciations because they have the flexibility to
match complicated patterns. This flexibility
comes from rich parameterizations. For example,
the famous image-recognizing neural network
model, “AlexNet” (Krizhevsky et al., 2012), has
roughly 61 million parameters. All hope of esti-
mating such a heavily parameterized model lies
in having a truly massive amount of training data
(not to mention exorbitant computing power).
And many big data environments benefit from
the ability of the researcher to generate new data

through experiments. For example, if you have
not succeeded yet in training your autonomous
vehicle, then drive the car another 100,000 miles.

The second, and perhaps more subtle, feature
of most machine learning success stories can
be understood in terms of their “signal-to-noise
ratios.” A signal-to-noise ratio describes how
much predictability exists within a system. Some
systems are by nature very predictable—their
signal-to-ratio is high. Others are inherently dom-
inated by randomness and thereby have low
signal-to-noise ratios. Take, for example, image
recognition. If handed a thousand Instagram pho-
tos, you will correctly identify those that contain
cats with a success rate of almost 100%. It
is generally easy for a human to distinguish
signal (the cat) from noise (blur, background
images, etc.). Machine learning thrives in data-
rich environments with strong signals and little
noise.

4 Finance is different

As the popular press so frequently reminds
us, machine learning can accomplish the once
unthinkable. It recognizes images and speech,
drives cars, and beats grandmasters at complex
games of strategy. This is where the excite-
ment, hype, and extrapolation kick in for finance.
Because machine learning has done so many
amazing things, it may seem a foregone conclu-
sion that it will dominate in financial tasks like
stock picking.

In order to develop realistic expectations about
the benefits of machine learning for asset man-
agement, we must understand what makes finance
different.

4.1 Small data

The core task in asset management—return
prediction—is a small data problem. This may
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sound surprising, given the constant marketing
barrage of “big data in finance.” But the market-
ing betrays a misunderstanding of what big data
and machine learning are about.

yt =
N∑

i=1

βixi,t−1, t = 1, . . . , T. (1)

To fix ideas, consider a regression context like
Equation (1) where on the left-hand side are the
future returns that we want to predict (yt) and
on the right-hand side are the predictor variables
(x1,t−1, . . . , xN,t−1). The right way to think about
whether you have big data or small data is to ask
“how rich of a model can my data accommodate?”
The answer to this question is determined first and
foremost by the number of independent observa-
tions you have for your left-hand side variable,
denoted by T . So, the key question in the asset
management context is “how many independent
return observations do I have.”

However, most of the discussion around so-called
big data in finance is about the number of predic-
tor variables, N. Asset managers will talk about
introducing big data sets like news text, satel-
lite images, web traffic, and geolocation to the
return prediction problem. But those are right-
hand side variables. The richness of a model is
constrained not by the number of regressors one
can conjure, but by the number of left-hand side
observations one can learn from. If I only have a
hundred observations for y, then it does not mat-
ter if my predictor variables number N = 103 or
N = 1010. In either case, the number of param-
eters I can estimate is effectively capped by the
number of y observations. Without sufficient y

observations, models are constrained to be small.

When most people say big data in finance,
they mean they have many variables to predict
returns—they mean large N. But the number of
predictors has never been a limiting factor in
quant research. It is not the number of regressors

that tells you if you have big data, it is the number
of parameters that you can reliably estimate—the
richness of your model—and that is determined
predominantly by the number of observations, T .

So, with that in place, it is straightforward to
answer the question “is return prediction a big
data problem?” First, we have to decide on the
frequency of returns we are counting—are they
annual returns, daily, tick data, etc. Clearly, the
appropriate frequency of returns for prediction
and portfolio analysis should be based on the
frequency with which the investor can rebalance
with reasonably low trading costs. This will vary
by investor and by asset class. In economics, it is
common to imagine a so-called “representative”
investor, which is the AUM-weighted average of
all investors in the economy. You might imagine
this as a large pension fund crossed with a high
networth individual. For largeAUM investors like
this, the monthly frequency is a sensible starting
point to think about rebalancing because anything
more frequent, even weekly let alone intra-day,
quickly becomes prohibitive as trading costs rack
up, leading to a large gap between what a statis-
tical prediction model says and what can actually
be implemented in practice.

Now, focusing on monthly returns, how much
data do we have? If you are trading a macro
strategy, using instruments like currencies, gov-
ernment bonds, and commodity futures, you have
a few decades of data, or a few hundred obser-
vations per asset. This is “tiny” data as it can
only support a model with a handful of param-
eters if one hopes to achieve a degree of model
stability. What about cross-sectional asset classes,
like single-name equities or corporate bonds?
Here the situation is brighter, as we can have
at any time up to a few thousand assets trad-
ing, each with anywhere from a few years to a
few decades of data, totaling to a few hundred
thousand observations. While this is more than
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Exhibit 1. Number of PCs explaining 80% of equity return variation.

Note. The figure shows the number of PCs necessary to explain at least 80% of the covariance among monthly returns of the Fama–French
100 size and value portfolios over the 1927–2019 sample. The red line shows the result for the full sample and the blue line shows the
result in rolling 60-month subsamples.

in the macro asset case, it is still small by any
machine learning standard, especially once one
considers that the effective number observations
is smaller due to significant cross-sectional cor-
relation in returns. For example, there is a 71%
average pairwise correlation among the widely
studied Fama–French 100 size and value portfo-
lios (Exhibit 1).1 Exhibit 2 shows that over the
1927–2019 sample, just three principal compo-
nents (PCs) are necessary to explain at least 80%
of the covariance among monthly returns of the
100 portfolios. Depending on the subsample, it
is often the case that a single PC captures 80%
of the common variation in returns, and it never
takes more than 10 PCs to achieve this thresh-
old. Evidently, the number of effective cross-
section observations is vastly overstated by look-
ing at asset count alone without regard to asset
correlation.

In return modeling, there is only one way to
expand the size of your data set—wait for time

to pass. That is, a key distinguishing feature
of finance versus many other machine learning
domains is that we cannot generate data through
experimentation. In 100 years, and regardless of
the amount of technological progress in that time,
return prediction will still be a small data problem.
In this way, asset allocation significantly contrasts
with the environments where machine learning
has famously succeeded.

It is worth noting that investors are heteroge-
neous, and some can rebalance more frequently
than others. High-frequency trading (HFT) firms,
for example, routinely trade at millisecond fre-
quencies. The concept of the representative
investor is valuable because it leads us to focus
on what most investors can accomplish, and
brings to the fore the idea of trading strategy
capacity. HFT has nearly instantaneous turnover
which translates into vastly more return data than
in the monthly problem; as a result, HFT can
use far more highly parameterized models than
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low-frequency traders. But the scale of these
trades is forced to be small, and this limits who can
participate. If the representative investor wanted
in on HFT, the turnover of her huge AUM at high
frequencies would magnify the scale of trades,
leading to large price impacts that compress any
HFT alpha, cannibalizing the profits that might be
achievable by a small trader.

Dhar (2015) further discusses the critical role of
data size in determining the impact of machine
learning in finance. He provides a thoughtful dis-
cussion of machine versus human strengths in
decision-making in the asset management con-
text, pointing out that “As a guiding principle,
however, a robot should be considered seriously
in situations where there is sufficient data from
which it can learn.”

4.2 Low signal-to-noise ratios

The second major difference between return pre-
diction and many other machine learning prob-
lems is that the signal-to-noise ratio in returns
is weak (and is constantly being pulled toward
zero). One of the most important reasons for
this is that economic growth, and hence financial
market behavior, is difficult to predict. The best
stock or investment portfolio in the world will, on
any given day, quarter, or year, experience dras-
tic swings in performance due to unanticipated
news.2 Second, the predictable signal in finan-
cial markets—often called the risk premium or
the expected return in excess of cash—is small.

The low signal-to-noise is not some unfortunate
coincidence of markets. On the contrary, it is a
feature ensured, and constantly reinforced, by
simple economic forces of profit maximization
and competition. Traders with information that
reliably predicts, say, a future rise in prices, do not
sit passively on that information. Instead they start
trading. The very act of exploiting their predictive
information pushes up prices, and thereby sucks

some of the predictability out of the market. And
they do not stop after prices have risen just a little.
They continue buying until they have exhausted
their information—until prices adjust to the level
that their information predicts. By leveraging
information for profit-oriented trading, informed
investors leave minimal predictability on the
table. With the predictability already priced in,
the only thing that moves markets is unantici-
pated news—shocks to the system—i.e., noise.
This idea, that competition in markets wipes out
return predictability, is not new. It is the very idea
underpinning the Nobel Prize-winning work on
the efficient markets hypothesis (Fama, 1970).

If well-functioning markets lack predictability,
why bother looking for signal at all? In an effi-
cient market, returns need not be entirely devoid
of predictability. Investors may stop short of using
their full information if, for example, it requires
taking on too much risk, if they possess behav-
ioral biases, if they face transaction costs, or if
they are subject to legal or regulatory restrictions
(such as insider trading rules). The remaining
predictability should be small and difficult to cap-
ture, as any easy profits will be quickly seized by
competitive traders, particularly over short hori-
zons. An interesting feature of risk-based return
predictability is that it tends to become stronger
with forecast horizon, a point emphasized by
Cochrane (2009). Exhibit 2 shows how stock pre-
dictability varies across horizons from one month
to five years ahead. For simplicity, we illustrate
this point in a linear regression with the Shiller
(2015) cyclically-adjusted price–earnings ratios
(CAPE). On one hand, machine learning can ben-
efit from the higher signal-to-noise ratios at longer
horizons (the R2 reaches 29.6% at five years). But
then we are faced with the fact that long-horizon
forecasts take a fixed time series sample and
cut it into fewer and fewer observations, driving
up standard errors and prediction error variance
along with it. A five-year forecasting model only
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Exhibit 2. The tradeoff of signal strength and
observation count.

Horizon Coeff. S.E. R2 N

1 0.02 0.00 0.5% 1115
12 0.25 0.05 7.7% 93
36 0.75 0.13 28.3% 31
60 0.96 0.17 29.6% 19

Note. In-sample CRSP value-weighted log market return pre-
dictive regressions using CAPE (scaled by 100) over forecast
horizons of one month to five years from 1926 to 2018. CAPE
data from http://www.econ.yale.edu/∼shiller/data.htm.

has 19 distinct return observations to learn from!
A central task facing financial machine learn-
ers researchers is to identify the most profitable
point along this tantalizing signal strength and
observation count tradeoff.

In addition to small data and low signal-to-noise
ratios, asset management possesses a variety of
other challenges that pose a problem to adaptation
of machine learning methods. We discuss three of
these below.

4.3 Evolving markets

The machine learning challenges posed by low
signal-to-noise ratios are further confounded by
the adaptive nature and dynamic character of mar-
kets. If a researcher identifies a new signal that
captures a particular form of asset mispricing
useful for predicting prices, then as the signal
becomes more widely known, more traders act
on it, and prices correct more quickly. The mar-
ket eventually absorbs that information and the
data-generating process changes are due to the
very actions of agents in the market. Likewise,
technological innovations can alter the structure
of the economy and reshape the way humans inter-
act with markets. While the frontiers of machine
learning have developed some tools that may help
with such adaptive phenomena (such as the online
learning algorithms in Arora et al., 2012; Li and

Hoi, 2014), it highlights the fact that finance
is more complex than many other domains of
ML research (cats do not begin morphing into
dogs once the algorithm becomes good at cat
recognition).

4.4 Unstructured data

The traditional inputs to quantitative asset
management are the kinds of well-structured
data sets that reside in an Excel spreadsheet.
Columns are predictor variables, rows are repeat
observations—these are the types of data that
lend themselves easily to statistical analysis. In
contrast, many interesting new data sources are
best characterized as “unstructured” data. They
include text data such as news articles and Tweets,
image data such as Instagram posts or Youtube
videos, and even some forms of market data
such as detailed limit-order books. The finance
industry often refers to such unstructured data as
alternative, or “alt,” data.

For most alt data sets, the data history is short. For
example, social media outlets may provide less
than a decade of data to work with, while some
sources of web traffic data or geolocation data
are available at most for a few years. The limited
time series presents a challenge for reliable back
testing. With a short history it is hard to form a
precise estimate of strategy performance which
ultimately means that even very strong signals
might prudently receive only small weights in a
portfolio.

4.5 Need for interpretability

Some machine learning models are proverbial
black boxes, and it can be extremely challenging
to draw meaningful interpretations of underlying
mechanisms from machine learning models (see,
e.g., Ghorbani et al., 2019). Yet, the ability to
understand the inner workings of one’s model is
a basic requirement in most asset management
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applications. While any asset manager prefers a
more predictive model, all else equal, they can be
averse to using historically reliable models that
they cannot interpret. This is another version of
the risk–return tradeoff that any investor solves.
So, while asset managers prefer a model with
more predictability to less, their fiduciary duty
of understanding and communicating the risks in
their clients’ portfolios leads them to also prefer
more interpretable models. In the end, choosing
a point on the predictability/interpretability fron-
tier is a ultimately a business decision of the asset
manager.

Finance is not alone in its need for interpretable
models. Doctors seek to understand the drivers
of machine learning medical diagnoses to avoid
adverse unintended consequences of relying on
algorithms (Cabitza et al., 2017) and governments
and regulators remain vigilant against implicit or
explicit biases in policy (such as lending decisions
of financial institutions, Hardt et al., 2016). This
broad demand has made interpretability a pri-
ority in machine learning research (Doshi-Velez
and Kim, 2017; Vellido et al., 2012). Machine
learning need not be an opaque black box. First,
researchers are making progress in improving
how humans interpret machine learning models
(Zhang et al., 2018; Horel and Giesecke, 2019).
Second, and perhaps more interestingly, struc-
tural modeling approaches can embed machine
learning techniques, which make efficient use
of the data and enhances discovery, within an
overarching theoretical model that provides inter-
pretation and intuition (an idea we discuss in more
detail below). There are many interesting poten-
tial research avenues for drawing more mean-
ingful and intuitive conclusions from financial
machine learning models.

5 The research frontier

Because of these critical differences between
finance and other fields where machine learning

thrives, the answer to the question “Can machines
learn finance?” is by no means obvious. As an
industry, the understanding of how impactful
machine learning will be for asset management
is only just emerging. This is exactly why new
research in this area is so valuable. With so much
at stake, the best path forward is digging in and
conducting diligent research.

5.1 Analysis, not anecdotes

When people discuss machine learning in finance,
the conversation is predominantly anecdotal—“I
heard a story about how manager XYZ does it.”
Methodical research into the benefits of machine
learning for asset management is in its infancy.
But early research, such as Dhar et al. (2000) and
Dhar (2011), tells a hopeful story.

Gu et al. (forthcoming) suggest that machine
learning methods can deliver significant out-of-
sample improvement in the performance of stock
selection strategies (Exhibit 3). They also offer
some new insights into the nature of its out per-
formance. For example, improvements arise most
prominently among the more sophisticated mod-
els (trees and neural networks), and are due in
large part to allowance of non-linear predictor
interactions that are missed by simpler methods.

On balance, Gu et al. (forthcoming) find portfo-
lio gains from using machine learning methods
versus a simple benchmark. They are econom-
ically and statistically significant, but the gains
are by no means revolutionary. First, note that
their benchmark is an OLS regression with only
three predictors: size, value, and momentum
(OLS3). This is likely an overly simplistic bench-
mark, as even unsophisticated asset managers
tend to use more advanced models than this and
are even likely to use some basic trappings of
machine learning. Second, while performance
of all strategies is measured gross of trading
costs, it does not mean that the comparison is
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Exhibit 3. Sharpe ratio comparison of machine learning strategies.

Note. Out-of-sample annualized Sharpe ratios for value-weighted decile spread long–short portfolios based on predictions from 12
machine learning models including a three-predictor OLS (OLS3) model, partial least squares (PLS), principal components regression
(PCR), elastic net (ENet), generalized linear model (GLM), random forest (RF), gradient-boosted regression trees (GBRT), and feed
forward neural networks with one to five hidden layers (NN1–NN5).
Source: Gu et al. (forthcoming).

exactly apples-to-apples. The more sophisticated
a model, the more likely it is to detect incre-
mental predictability in regions of the data that
are the most expensive to trade, which is exactly
why the predictability was left on the table in
the first place. Both of the considerations further
narrow the gap between performance of machine
learning-based strategies and the benchmark.

5.2 Combining economic theory and machine
learning

A basic principle of statistical analysis is that the-
ory and model parameters are substitutes. The
more structure you can impose in your model,
the fewer parameters you need to estimate and
the more efficiently your model can use observa-
tions at its disposal to cut through noise. That is,
models are helpful because they filter out noise (a
map of New York is helpful for navigating the city
in part because of all of the detail it omits). But
an over-simplified model can also filter out some
signal too, so in a data-rich and high signal-to-
noise environment, you would not want to use an
unnecessarily small model. Simplicity, however,
can be a virtue when signal-to-noise is low, where

the benefit of filtering out noise might outweigh
the cost of missing some signal.

In asset management, one can begin to tackle
the low signal-to-noise problem by bringing eco-
nomic theory to describe some aspects of the data,
complemented by machine learning tools to cap-
ture aspects of the data for which theory is silent.A
revealing example is the method of instrumented
principal components analysis (IPCA) proposed
by Kelly et al. (2017, 2018), and its exten-
sion to instrumented autoencoder models by Gu
et al. (2019). They begin from a simple economic
structure—a low-dimensional factor model for
returns. In contrast, a fully unstructured machine
learning analysis would be agnostic of the factor
structure and would instead rely on the statistical
logic that, with enough data, nonparametric meth-
ods will eventually detect the factor structure if it
is in the data.

In the context of return modeling, an unstruc-
tured approach would be a severely inefficient
use of data because, as a profession, we have
high conviction that returns follow a factor struc-
ture. A common feature of essentially every
economic theory is that returns obey a factor
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structure—there are a few sources of common risk
that drive returns of essentially all assets and the
rest of the variation in individual asset prices is
idiosyncratic noise. Furthermore, a long history
of empirical research in finance has demonstrated
that a few large eigenvectors dominate the covari-
ance matrix of all returns in the economy. Using
nonparametric methods to learn that there is a
factor structure that would waste data; you do
not want to “spend” your observations re-learning
something you already knew.

Where economic theories differ is in the nature
or definition of the common factors. They range
from theories in which the factors are macroeco-
nomic aggregates related to consumption growth
and real investment to those based on volatility
shocks or behavioral biases. The idea proposed in
Kelly et al. (2017, 2018) and Gu et al. (2019)
is to impose the general factor model mold,
while embedding machine learning in specific
parts of that mold in order to learn what the
true factors are. They use a large collection of
stock-specific information to learn the latent com-
mon factors and each stock’s loadings on those
factors—exactly those parts of the factor model
that are not pinned down by theory. They also
do this while imposing a no-arbitrage restric-
tion, which is another theory-based disciplining
device that reduces model parameterization to
more efficiently use available data.

These papers also highlight that machine learning
is not all about alpha. This is important because
most discussions, and certainly most anecdotes,
of machine learning applied to finance focus on
the creation of alpha. Using new data and machine
learning to build alpha (i.e., to find new, unique
sources of return predictability) heads straight
into the most competitive aspect of financial mar-
kets. As more investors enter the market with
similar data and similar tools, the mispricing
corrects and that alpha compresses.

Kelly et al. (2017) and Gu et al. (2019) empha-
size that a promising area of asset management
research uses machine learning to improve factor
investing—that is, more efficiently establishing
risk exposures and earning compensation for
bearing that risk. A central tenet of asset pric-
ing theory is that risk and return are inextricably
linked in equilibrium. By taking this economic
restriction seriously, these papers build superior
return forecasts by more accurately forecasting
risk—in particular, covariances between stocks
and common factors. Exhibit 4 presents evi-
dence that return forecasts based on the IPCA
model of Kelly et al. (2017) and the conditional
autoencoder (CA2) of Gu et al. (2019) translate
into substantial improvements in out-of-sample
portfolio Sharpe ratio compared to benchmark
Fama–French models.

Their methods estimate statistically optimal fac-
tors which improve factor portfolio performance
by reducing tracking error relative to the true,
unobservable risk factor—ultimately providing a
cleaner means of harvesting the risk premium.
This contrasts with more traditional research fac-
tors which tend to have ad hoc and inefficient
constructions.3 Like finding alpha, optimizing
factors with machine learning can significantly
boost investment portfolio performance. But
unlike alpha, true factor premia are underpinned
by risk and do not tend to decay as more investors
enter.

5.3 Beyond return prediction

While we emphasize that return prediction
(because of its small data and low signal-to-noise
ratios) poses a particularly difficult challenge for
machine learning, it is important to recognize that
other critical finance problems are less subject to
these limitations and in turn can benefit more from
machine learning. Important examples include
portfolio implementation problems such as risk
management and transaction cost management.
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Exhibit 4. Long–short portfolio Sharpe ratios based on factor model return forecasts.

Number of factors

Model 1 2 3 4 5 6

Fama–French −0.82 −1.13 −0.69 −0.60 0.18 −0.53
IPCA −0.15 −0.07 0.59 0.81 1.05 0.96
CA2 −0.03 0.08 0.92 1.39 1.45 1.53

Note: Annualized out-of-sample Sharpe ratios for portfolios that are long–short the top/bottom decile of stocks
based on return forecasts from the Fama–French model with one to six factors (including momentum), the IPCA
model of Kelly et al. (2017), and the two-layer conditional autoencoder model (CA2) of Gu et al. (2019). Stocks
are value-weighted within each decile. Source: Gu et al. (2019).

For example, the data underlying trading cost
models are based on transactions, which are avail-
able in abundance. For example, the trading
cost analysis by Frazzini et al. (2018) studies
a “live execution database contains 11,044,700
parent orders, 4,368,100,000 child orders, and
691,600,000 executions across 9,543 stocks glob-
ally betweenAugust 1998 and June 2016, totaling
US$1,701,390,000,000 in trades.” A data set of
this size can support model richness that would
not be dreamed of in a model of monthly returns.

As another example, a long literature exempli-
fied by the Nobel Prize-winning work of Engle
(1982) demonstrates that financial market risks
possess a high degree of predictability. That is,
risk prediction benefits from a comparatively high
signal-to-noise ratio. When the signal-to-noise
ratio is high, it takes fewer observations to zero
in on the ground truth predictive relationship.
Indeed, risk modeling has been among the finance
applications with the fastest uptake of machine
learning methods (early examples include Don-
aldson and Kamstra, 1997; Aït-Sahalia and Lo,
1998).

6 Conclusion: An evolution,
not a revolution

Financial machine learning has the potential to
be an important step forward in quantitative

investing. Two key points are crucial for under-
standing the current state of machine learning in
the practice of asset management. The first is that
research is just taking off and many important
questions are yet to be answered. The second is
that early research evidence indicates economi-
cally and statistically significant improvements
in the performance of portfolios that leverage
machine learning tools. However, the gains are
evolutionary, not revolutionary.

The ideas behind machine learning—leveraging
new data sets to identify robust additive portfolio
performance and using quantitative methods
to extract information systematically—are the-
modus operandi of quantitative investment pro-
cesses. For decades, asset managers have
used human-intensive, decentralized statistical
learning. Machine learning offers a systematic
approach to investing that mechanizes that pro-
cess, allows managers to metabolize informa-
tion from more new sources faster, including
unstructured data previously untapped, and pro-
vides tools to search through increasingly flexible
economic models that better capture complex
realities of financial markets.

The evolution of asset management by incorporat-
ing machine learning is already underway, but the
industry’s collective machine learning market-
ing hype must be tempered. Asset management,
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and return prediction in particular, is a small
data science with low signal-to-noise ratios, mak-
ing it very different from disciplines where
machine learning has thrived. As a result, adapt-
ing machine learning in finance is a more difficult
proposition than many commentators appreciate.
Attempts to model returns with the extremely rich
and flexible statistical models employed in other
domains are typically doomed from the outset
because of the lack of data to support such models.
The benefits of machine learning for return pre-
diction are most likely to come from moving to
modestly flexible nonlinear models that are but-
tressed by structural assumptions from economic
theory and human expertise. Other beneficial uses
in asset management include machine learning
approaches for better “crafting” portfolios once
return predictions have been made, for exam-
ple, by improving models of risk and trading cost
management.

Disclaimer

The views and opinions expressed are those of
the authors and do not necessarily reflect the
views of AQR Capital Management, its affiliates,
or its employees; do not constitute an offer,
solicitation of an offer, or any advice or recom-
mendation, to purchase any securities or other
financial instruments, and may not be construed
as such.

Notes

1 Data from https://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html.

2 To give a sense of the volatility in markets, a single stock
on average will have an expected return around 5% per
year above cash and a volatility of returns of nearly 40%
per year. That is, its volatility is eight times larger than
the expected excess return. Even at the market portfo-
lio level, volatility is nearly four times as large as the
expected return.

3 Take for example the Fama–French value factor, HML.
This factor buys 30% of stocks with the highest B/M

ratios, sells 30% with low B/M, and ignores the rest.
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