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Combinatorial optimization problems require combinatorial-specific search operators so that populations
of candidate solutions can evolve efficiently. Indeed, several researchers created modifications to the basic
genetic operators of mutation and recombination in order to create high performing combinatorial-specific
operators. However, it is not known which operators perform better as no systematic comparisons have
been done. In this work, a new algorithm that explores a new chromosomal organization based on multigene
families is used. This new organization together with several combinatorial-specific search operators,
namely, inversion, gene and sequence deletion/insertion, and restricted and generalized permutation, al-
low the algorithm to perform with high efficiency. The performance of the new algorithm is empirically
compared on the 13- and 19-cities tour traveling salesperson problem, showing that the long abandoned

inversion operator is by far the most efficient of the combinatorial operators. The efficiency and potentiali-
ties of the new algorithm are further demonstrated by solving a simple task assignment problem.

1. Introduction et al 1985),subtour chunks crossovéGrefenstettet al
1985), heuristic crossovefor adjacency representation
Gene expression programming (GEP) is a multigenic genésrefenstettet al 1985; Jogt al. 1989; Lin 1965; Suh and
type/phenotype system encoding expression trees linked byead Gucht 1987partially-mapped crossovéGoldberg and
particular linking interaction (Ferreira 2001). In its simplestingle 1985),cycle crossove(Oliver et al. 1987),order
representation (head lendtts 0 and maximum aritg= 0), ~crossover(Davis 1985; Oliveet al 1987),order andposi-
GEP is equivalent to the canonical genetic algorithm (GA), fipn based crossovgByswerda 1991jeuristic crossover
which each gene consists of only one terminal. Such simgg path representation (Grefenstette 1987; Liepinal
chromosomal organization was used to solve the 11-mulii987),genetic edge recombination crossoy&hitley et
plexer problem, where the one-element expression trees 8h- 1989, 1991),maximal preservative crossover
coded in each gene were posttranslationally linked by tiiUhlenbeinet al 1988),voting recombination crossover
Boolean function ifXy,2) (Ferreira 2001). To solve combi- (MUhlenbein 1989)displacement mutatiofHerdy 1991;
natorial problems, however, another kind of linking interadlichalewicz 1992)exchange mutatiofAmbatiet al 1991;
tion is required. For instance, in the traveling salespers@anzhaf 1990; Michalewicz 1992; Olivet al 1987;
problem (TSP) the linking consists obviously of the distandgyswerda 1991)epeated exchange mutatigAmbati et
between the cities represented by two adjacent genes. al. 1991; Beyer 1992)insertion mutation(Fogel 1988;
The TSP represents a classic optimization problem aMichalewicz 1992; Syswerda 199E)mple inversion mu-
good, traditional approximation algorithms have been déation (Grefenstette 1987; Holland 197&)yersion muta-
veloped to tackle it down (see, e.g., Papadimitriou aritn (Fogel 1990, 1993), angtramble mutatiorfUlder et
Steiglitz 1982 for a review). However, to evolutionaryal. 1990). Note that, in some cases, operators are not named
compultists, the TSP serves as the simplest case of a var@tgctly as in the original work, as this nomenclature was
of combinatorial problems which are of enormous relevan¢ecently proposed by Larrafiaggal (1998) in an attempt
to industrial scheduling problems (Bonackeal 2000; Hsu to classify the overwhelming number of combinatorial search
and Hsu 2001; Johnson and McGeoch 1997; Katayama angerators. More recently, other operators suckdge as-
Narihisa 1999; Merz and Freisleben 1997; Reinelt 1994¢embly crossovgNagata and Kobayashi 1997) anuer-
Indeed, several evolution inspired algorithms used the T®Per operato(Tao and Michalewicz 1998) were developed.
as a battleground to develop combinatorial-specific search Despite or due to the huge number of combinatorial-spe-
operators such aalternating edge crossovéGrefenstette cific operators, little work has been done on the compara-
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tive performance of the different operators, although differ- 012345 012345
ent forms of crossover have been compared (Grefenstette 632451 EDFCBA
al. 1985; Oliveret al 1987; Whitleyet al. 1989, 1991). In
this work, the performance of simple inversion mutation i§S expression consists of the orderly interaction of the mem-
compared with insertion mutation and exchange mutatidters of each MGF with one another as shown below:
on the difficult 19-cities tour TSP, with simple inversion
mutation astoundingly outperforming insertion and exchange
mutation. Furthermore, poorly performing operators such as
displacement mutation or repeated exchange mutation, could
only be compared using an easier tour of only 13 cities. Thus,
insertion and displacement mutation, two closely related
operators in terms of implementation, are compared on the
13-cities tour TSP. Exchange mutation and repeated exchange
mutation are also compared using the shorter tour. Moreo-
ver, the potentialities of inversion are further demonstrated
by solving a simple task assignment problem where a new
chromosomal organization based on multigene families is
used. 3. Combinatorial-specific operators:
Performance and mechanisms

2. Multigene families and scheduling problems

Combinatorial problems can not be solved using the genetic
As stated previously, the chromosomal organization usedaperators of mutation and recombination of the basic gene
solve combinatorial problems is very simple and consists ekpression algorithm as these operators would generate use-
multigenic chromosomes composed of one-element gentess individuals containing MGFs with repeated elements
where each gene codes for a one-element expression ttedéhe one hand, and missing certain elements on the other.
(ET) (Ferreira 2001). Furthermore, one-element genes mbndeed, in combinatorial problems, the elements of a
be organized in multigene families (MGFs), in which a pamultigene family must all be present and cannot be repre-
ticular class of terminals or tasks is gathered. Such chronsented more than once. Therefore, special search operators
somes composed of MGFs are very useful to evolve solirust be created so that genetic variation could be introduced
tions to combinatorial problems, as different classes of tewxithout creating invalid structures.
minals/items can be included in each MGF. For instance, the In this section, five genetic operators are described: inver-
different cities in the traveling salesperson problem may Iséon, gene and sequence deletion/insertion, and restricted and
encoded in a multigene family, where each gene codes fogeneralized permutation. These combinatorial-specific opera-
city. Consider the simple chromosome below, composed tofs allow the introduction of genetic variation without dis-

one MGF with nine members: rupting both the structure and balance of multigene families.
Note that these operators have been used by other research-
CADEBHFIG ers, but | took the liberty to change their names whenever the

name previously given could cause confusion or does not re-

where each element represents a city. In this case, the fXst the GEP context of genes and MGFs. However, the cor-
pression of this chromosome consists of the spatial Orgafict references to the original names are given below.

zation of the one-element ETs, for instance, the following pgafore proceeding with the description of their mecha-

tour for the traveling salesperson problem (the starting apf s it is useful to compare their performances (Figure 1).
finishing point is in gray): The problem chosen to make this analysis is the TSP of sec-
tion 4.1 with 19 cities using population sizeef 100 and
evolutionary time of 200 generations. The 19 cities were
arranged in a rectangle so that the shortest tour is 20. There-

fore, the performance can be rigorously determined in terms
of success rate, which is evaluated over 100 identical runs.
As Figure 1 clearly demonstrates, the best operator is by far

inversion, followed by gene deletion/insertion, whereas re-
For optimization problems witN classes of terminals, stricted permutation is extremely limited.
multigenic chromosomes composedNahultigene families
are used. For instance, the chromosome below compose@ddf. Inversion
two MGFs with six members, was designed to evolve solu-
tions to the simple task assignment problem of section 4TAe inversion operator, in its mechanism, corresponds basi-
(multigene families have different shades): cally to the inversion operator firstly described by Holland
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Figure 1. Comparison of inversion (Inver), gene deletion/insertion (Del/Ins), and restricted permutation (Permut)
on the traveling salesperson problem with 19 cities. For this analysis P = 100 and G = 200. The success rate
was evaluated over 100 identical runs.

(1975). In the classification proposed by Larrafiagal Note also that this operator allows small adjustments
(1998) it received the more complicated designation of “sintike, for instance, the permutation of two adjacent genes.
ple inversion mutation”. In the MGFs context of GEP thé&or instance, if genes 7 and 8 in FMs&chromosome (3.3)
inversion operator works as follows: it randomly selects theere chosen as inversion points, these genes are permuted,
chromosome, the multigene family to be modified, the imbtaining:

version points in the MGF, and then inverts the sequence

between these points. Each chromosome can only be modi-01234567890120123456789012

fied once by this Operator_ bhfgkIC Jm laedAIHIKGFBELCDM (34)
Consider the chromosome below composed of two _ . : o
multigene families, each containing 13 members: As F|gure_1 em_phasae;,_ INversion is the most powe_rful
of the combinatorial-specific genetic operators, causing
01234567890120123456789012 populations to evolve with great efficiency when used as the
bhfgkicmjlaedMD  CLEBFGKJHIA (3.1) only source of genetic diversification. Indeed, this operator

alone produces better results than when combined with gene
Suppose genes 2 and 6 in MGfere chosen as inversiondeletion/insertion or permutation.
points. Then the sequence between these points is reversedThe high performance obtained by GEP inversion is sur-

obtaining: prising and deserves a careful inspection. Perhaps for his-

torical reasons, inversion was abandoned by researchers in

01234567890120123456789012 the early development of GAs (see, e.g., Goldberg 1989 and
bhfgkicmjlaedMD  FBELGGKJHIA (3:2) Mitchell 1996). Decisive for this outcome was, most cer-

L . , . tainly, Bagley’s (1967) disappointment with inversion while
Note that_, with inversion, the whole multigene famlly_cal?r ing to conciliate inversion with homologous recombina-
b_e mve_rted i th_e first and Ias_t gene were chosen as INV&Gn (see Goldberg 1989 for a detailed narrative). Obviously,
sion points. F_or instance, the inversion of M@Fchromo- inversion disrupts homology and homologous recombina-
some (3.1) gives: tion ceases to work. Unfortunately, Bagley persisted with
01234567890120123456789012 recombination and did not try inversion alone.
bhfgkicmjlaedAIHIKGFBELCDM (3.3) Furthermore, the astounding results obtained for inver-
sion are better appreciated if we compare them with attempts



to solve the 19-cities tour TSP by GAs (Haupt and Haugte genes to be exchanged. Each chromosome is only modi-
1998). These researchers could not find the shortest rofitel once by this operator.

using population sizes of 800 for 200 generations. As shown Consider another chromosome composed of two
in Figure 1, GEP not only finds the shortest route using invanultigene families, each with 13 members:

sion but also using gene deletion/insertion or restricted per-

mutation using population sizes eight times smaller than the 01234567890120123456789012

ones used by the GA. Moreoveririfersionalone isdoing ikmfghdeljcabLJIHG ~ CDBKVFAE (3.7)

the search, GEP finds the shortest route in 96% of the rung.uppose genes 5 and 9 in F@re chosen to be exchanged

3.2. Gene deletion/insertion Then the following chromosome is formed:

N . . . 01234567890120123456789012
The gene deletion/insertion operator is the second in impor- ikmfghdelicabLJIHG NVDBKCEAE (3.8)
tance of the analyzed combinatorial-specific operators (see
Figure 1 above). This operator corresponds to the “insertion Restricted permutation, when used at small rates and in
mutation” operator in the classification proposed b¥ombination with inversion, might be useful to make finer
Larrafiageet al (1998). Here, the designation “gene deleadjustments. However, for the problems analyzed in this

tion/insertion” was chosen for three reasons: 1) to reflect thgyrk, when permutation is used in conjunction with inver-
fact that the inserted element is previously deleted; 2) &on the success rate slightly decreases.

emphasize that only one gene is deleted/inserted at a time;
and 3) to distinguish this operator from the closely relategls. Other search operators
operator “sequence deletion/insertion” described below (sec-

tion 3.4). The gene deletion/insertion operator introduced in section
The gene deletion/insertion operator randomly selects t8 permits only the deletion/insertion of genes, i.e., the

chromosome, the multigene family to be modified, the gergnallest sequence composed of only one element. Another

to transpose, and the insertion site. Each chromosome ggfgrator can be easily implemented that deletes/inserts se-

only be modified once by this operator. quences of varied length. This operator was named “sequence
Consider the chromosome below composed of twgeletion/insertion”, and corresponds to the “displacement
multigene families, each with 13 members: mutation” operator in the classification proposed by

Larrafiagat al. (1998). The deletion/insertion of sequences
of different lengths might appear more advantageous than
the deletion/insertion of genes, but experience shows the op-

Suppose gene 3 in MGHas selected to transpose to sit@OSite (see Figure 2 below). In fact, this operator produces

7 (between genes 6 and 7). Then gene 3 is deleted in {ﬁgults which are even worse than the restricted permutation
place of origin and inserted between genes “d” and “eo,perator in t.he tr_avellng salesperson prob!em v_\/|th 19 cmgs
(compare with Figure 1 above). In fact, an identical analysis

01234567890120123456789012
ifg habdecjkimKLHCIGDFEJMBA (3.5)

obtaining:
g done with this operator showed that the sequence deletion/
01234567890120123456789012 insertion is incapable of solving the 19 cities TSP using popu-
ifgabd hecjkimKLHCIGDFEJMBA (3.6) lation sizes of 100 individuals for 200 generations. Thus, an

easier version of the TSP with 13 cities (with the cities also
The deletion/insertion of genes when combined with mopdaced in a rectangle so that the shortest tour is 14) was cho-
powerful operators such as inversion, might be useful to magen in order to make comparisons between gene deletion/
finer adjustments. However, for all the problems analyzedsertion and sequence deletion/insertion (Figure 2). For this
in this work, the performance was higher if inversion workednalysis, a population size of 100 individuals and an evolu-

alone. tionary time of 200 generations were used and the success
rate was also evaluated over 100 identical runs.
3.3. Restricted permutation The other operator to be analyzed here is an extension to

the restricted permutation operator of section 3.3. Recall that
The restricted permutation operator appears as the “exchatiggt kind of permutation operator exchanges only a pair of
mutation” operator in Larrafiagd al. (1998). It allows two genes per chromosome, i.e., the restricted permutation rate
genes occupying any positions within a particular multigene is evaluated bg_=N_/P, whereN_ represents the number
family to trade places. This operator might also be useful tchhromosomes modified. A more generalized version of
make finer adjustments when combined with inversion, bthis operator can be easily implemented where a different
it performs poorly if used as the only source of genetic vamumber of genes in a chromosome can trade places with other
ation (see Figure 1 above). genes according to a certain rate. More formally, the gener-

The restricted permutation operator randomly choosatized permutation rate is evaluated bp_=N_/(C P),
: . e 9p gp G ML

the chromosome, the multigene family to be modified anathereN,, represents the number of genes modified@nd
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Figure 2. Comparison of gene deletion/insertion (Gene) with sequence deletion/insertion (Seq) on the traveling salesperson
problem with 13 cities. For this analysis P = 100 and G = 200. The success rate was evaluated over 100 identical runs.

the chromosome length. This operator was named “gengrerse than restricted permutation and, in fact, was incapa-
alized permutation” and corresponds to the “exchange figle of finding a perfect solution. The results obtained for
peated mutation” operator in Larrafiagal (1998). Again, the simpler version of the TSP with 13 cities are shown in
a more generalized permutation might appear more effiigure 3. In this analysis the restricted and generalized
cient than the restricted permutation described above, pdgrmutation are compared using populations of 100 indi-
experience shows that restricted permutation is slightiduals evolving for 200 generations, i.e., exactly the same
better (see Figure 3 below). For instance, in the TSP witlalues ofP andG used to solve the much more complex
19 cities (see Figure 1 above), this operator performd@&P with 19 cities of Figure 1.
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Figure 3. Comparison of restricted permutation with generalized permutation on the traveling salesperson problem
with 13 cities. For this analysis P = 100 and G = 200. The success rate was evaluated over 100 identical runs.



4. Using inversion to solve scheduling generations. As shown in Figure 1 above and in the first col-
problems umn of Table 1, GEP not only is capable of solving this prob-
lem using populations of only 100 individuals and for the
The first problem of this section is the already mentioneg@Me 200 generations, but also is capable of finding the short-
TSP with 19 cities. And it has already been shown that tHest route in practically all runs (in 96% of the runs, in fact).
problem requires only a multigene family consisting of the It is worth emphasizing that only inversion was used to
genes representing the 19 cities the salesperson should vi$gate genetic variation. And, indeed, the presence of other
The second problem is a task assignment problem ag@netic operators, namely gene deletion/insertion and re-
requires two different multigene families, one containing thétricted permutation, decreases slightly the success rate and
agents and the other the tasks assigned to the agents. therefore were not used. It seems that these operators are
unnecessary for finer adjustments whenever inversion is

4.1. The traveling salesperson problem doing the search.
Figure 4 shows the progression of average and best tour

For the TSP with 19 cities there are 19! = 1.2164%ckon- for a successful run of the experiment summarized in the
binations to search. If the starting point is fixed (and consBtst column of Table 1. Note that the evolutionary dynamics
quently the ending point), the number of possible combin#er combinatorial problems is similar to the dynamics char-
tions is halved to 6.0823.F0Furthermore, choosing a con-acteristic of GAs (see, e.g., Goldberg 1989). In these dy-
figuration where all the cities lie in a rectangle so that tHeamics the plot for average fitness closely accompanies the
shortest tour is 20, allows the rigorous evaluation of the pdHot for best fitness and the oscillatory pattern on average
formance of the algorithm in terms of success rate. fitness is less pronounced than in GEP dynamics (Ferreira

Obviously, the tour length cannot be used directly asZ?02). The dynamics obtained here support the idea that sim-
measure of fitness as the shorter the tour the fitter the in8I€ replicator systems are fundamentally different from geno-
vidual. Thus, each generation, the fitnss an individual  tyPe/phenotype systems where a complex expression already

programi in generatiory is evaluated by the formula: exists. Indeed, an extremely simple expression takes place
to express fully the chromosomes used to solve the TSP: in
= T,-t+1 (4.1)fact, the chromosome itself is the phenotype or the solution.

wheret, is the length of the tour encoded nandT is the
length of the largest tour encoded in the chromosomes ofthe 4,
current population. This way, the fithess of the worst indi-
vidual of the population is always 1. As usual in GEP, indi-
viduals are selected according to fitness by roulette-wheel -
selection and each generation the best individual is cloned
unchanged into the next generation (simple elitism). The pa-
rameters used per run are summarized in the first column of 4
Table 1. T Avg Touwr
The results obtained by GEP are astounding if we com-8
pare them with the performance of GAs to solve the 19-cit- ¢ so
ies tour TSP. As a comparison, Haupt and Haupt (1998) coulo§
not solve this problem using population sizes of 800 for 2008 5

o

—<&— Best Tour

<

3
g 40
[
Table 1
Parameters for the traveling salesperson problem with 19 %0
cities (TSP) and for the task assignment problem (TAP).
TSP TAP
Number of runs 100 100 20
Number of generations 200 50
Population size 100 30
Number of multigene families 1 2 10
Number of genes per multigene famil 19 ° % 100 190 200
um 9 P 9 Y Generations
Chromosome length 19 12 ) ) )
Inversion rate 0.25 0.30 Figure 4. Progression of average tour of the population and the

best tour for a successful run of the experiment summarized in
Success rate 96% 69% the first column of Table 1 (TSP with 19 cities).




4.2. The task assignment problem ness of a successful run. By generation 16 an individual with
maximum fitness was found:

The task assignment problem (TAP) of this section is the toy

problem chosen by Tank and Hopfield (1987) in tBeien- 012345 012345

tific Americanarticle to illustrate the workings of Hopfield ~ 536241 EDCFBA

networks on combinatorial cost-optimization problems. . .

In TAP there are tasks that must be accomplished b _hlch corresponds to the best assignment of 44 (see also
using onlyn workers. Each worker performs better at som igure 5 above):
tasks and worse at others and obviously some workers are
better than others at certain tasks. The goal is to minimize
the total cost for accomplishing all tasks or, stated differ-
ently, to maximize the overall output of all the workers as a
whole.

Suppose we had to shelwdook collections in a library
usingn shelving assistants. Each assistant is familiar with
the subject areas to varying degrees and shelves the collec-
tions accordingly. The data or fithess cases in the task as-
signment problem consist of the rates at which books are
shelved per minute (Figure 5).

For this simple six-by-six problem there are already Itis worth noticing that the evolutionary dynamics shown
6! = 720 possible assignments of assistants to book cai-Figure 6 is no longer of the type expected for a GA. In
lections.The best solution has the highest sum of rates féact, it has all the characteristics of GEP dynamics with its
the chosen assistants. For the particular set of fitness caggsillatory pattern in average fitness and a considerable gap
(see Figure 5), the best possible solution is known and cbetween best and average fitness (Ferreira 2002). This kind
responds td_ = 44. of dynamics is to be expected due to the higher complexity

This kind of toy problem is very useful for comparingrequired to express the chromosomes composed of two
the performance of different algorithms and, here, the poiultigene families encoding not only the MGFs’ members
tentialities of inversion are further tested in the context dfut also specific interactions between them.
chromosomes composed of more than one multigene fam-
ily. Indeed, the task assignment problem is solved very effi-

45

ciently using only inversion as the source of genetic varia-
tion and two MGFs: one to represent the assistants (repre- f.........[ .t
sented by 1-6) and another to represent the book collections Vv \N
(represented by A-F). The parameters used per run and the \
success rate for this problem are shown in the second col- 35 e \ {'
umn of Table 1. Again, selection was made by roulette-wheel \2\/\’
sampling coupled with elitism. Note that this problem was 0l e ﬂv)
efficiently solved using extremely small populations of only
30 individuals evolving for a short period of 50 generations. § —e—Bestind
. . - 25
Figure 6 shows the progression of average and best fit- é —e— Avg fitness
2
2 20
A B C D E F i
1 |10 6 1 5 3 7 15
2/5 4 8 3 2 6
3|4 9 3 7 5 4 10
416 7 6 2 6 1
5/'5 3 4 1 8 3 °
6|1 2 6 4 71 2
0
) ) ) 0 10 20 30 40 50
Figure 5. The task assignment problem. Each assistant (1-6) Generations
should be assigned to one collection of books (A-F) based on
the rates at which books are shelved per minute (fithess Figure 6. Progression of average fitness of the population and
cases). Shaded squares show the best assignment with the the fitness of the best individual for a successful run of the

largest sum of shelving rates, 44. experiment summarized in Table 1, column 2 (TAP).



5. Conclusions Bonachea, D., E. Ingerman, J. Levy, and S. McPeak, An
Improved Adaptive Multi-Start Approach to Finding Near-
In this work, a new chromosomal organization consisting éptimal Solutions to the Euclidean TSP. In D. Whitley, D.
multigene families was described. Multigene families corfsoldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G.
tain members of a particular class of terminals and are, theRgyer, eds.Proceedings of the Genetic and Evolutionary
fore, very useful for solving scheduling problems. Computation Conferencel43-150, Las Vegas, Nevada,
Furthermore, special combinatorial search operators wdv®rgan Kaufmann, 2000.

created so that both the chromosomal organization and thavis, L., Applying Adaptive Algorithms to Epistatic Do-

composition of multigene families could be fully exploitedmains. InProceedings of the International Joint Conference
to solve combinatorial problems. Indeed, all the genetign Artificial Intelligence 162-164, 1985.

modifications made by these combinatorial-specific OPerg reira. C. 2001. Gene Expression Programming: A New

Fors a!ways result in valid chromoso_mes, ie., c_:hromosomg\aaptive Algorithm for Solving Problem&omplex Systems
in which both the structure of multigene families and theq (2): 87-129

balance of its members are maintained. This is obviously a ~ C. Mutation. T " 4R bination:
prerequisite for a good genetic operator. However, this is fgrreira, C., Mutation, Transposition, and Recombination:

guarantee that this kind of operator will be highly effectivénAnalysis of the Evolutionary Dynamics. In H. J. Caulfield,

and, in fact, some perform better than others. The resu s'H‘ Chen, H.-D. Cheng, R. Duro, V. Honavar, E. E. Kerre,

presented here show that inversion astoundingly surpas%é‘u’ M. G. Romay, T. K. Shih, D. V‘?”t“ra’ P. P. Wang, Y.
other combinatorial-specific operators such as the mod YI@ng, _eds.Prgceedlngs of the 6th Joint Conference on In-
ately performing gene deletion/insertion and restricted pjp_rmz_itlon ch_ences, ath Internatlonal Workshop on Fron-
mutation, and the poorly performing sequence deletion/i €rs I Evolutionary Algorlfchmspages 614-617, Research
sertion and generalized permutation. And, no doubt, surpasggémgle Park, North Carolina, USA, 2002.
all the modified forms of crossover especially tailored t-ogel, D. B., 1988. An Evolutionary Approach to the
deal with combinatorial problems. Traveling Salesman Problemiological Cybernetics60:

In addition, it was also shown that solutions to schedul-39-144.
ing problems are better found if the search is exclusiveBogel, D. B., A Parallel Processing Approach to a Multiple
done by inversion. Indeed, mixing inversion with other opfraveling Salesman Problem Using Evolutionary Programming.
erators, albeit combinatorial-specific, results in a decreageL. Canter, ed Proceedings of the Fourth Annual Parallel
in performance. Processing Symposiuil8-326, Fullerton, CA, 1990.

The performance of inversion was further evaluated YFogel, D. B., 1993. Applying Evolutionary Programming to

two scheduling problems: the difficult TSP with 19 citiesgg|acted Traveling Salesman Problef@gbernetics and
that required only one multigene family and the task aSSigﬁystem,sM: 27-36.

ment problem that required two multigene families. In bot . . .
P 9 g oldberg, D. E. and R. Lingle, Alleles, Loci and the Traveling

cases, the new algorithm performed with high efficienc .
solving, with less resources and with almost maximum su _aIesman Problelm. InJ.J. Grefenstetteﬁdcgedmgs. of
e First International Conference on Genetic Algorithms

0,
\(/;v?tshslgtc?itifs? %), a problem the GA could not solve (T§and Their Applicationd_awrence Erlbaum, 154-159, 1985.
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